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Abstract

Modern OS kernels allow untrusted extensions, such as eBPF
programs, to be dynamically loaded into kernel space, with
their safety ensured by an in-kernel verifier. However, this ap-
proach implicitly places the entire verifier, a complicated and
error-prone component, within the trusted code base. Despite
substantial efforts to verify and test the verifier, its complexity
and frequent updates continue to introduce soundness bugs,
leading to various security issues.

This paper introduces Approximation-Enforced Execution
(AEE), a novel concept to ensure the safe execution of un-
trusted kernel extensions, even in the presence of potential
verifier bugs. The verifier can be essentially abstracted into
two key components: the complex state approximation and
the simpler safety check based on the former. By enforcing
the program execution to remain within the verifier’s approxi-
mations, the soundness of state approximation is, by design,
not assumed—executions with non-contained states are termi-
nated, thereby significantly reducing the trust base. AEE also
leverages the verifier, but mainly obtains the approximations.
It then rewrites the program to conduct the approximation
enforcement, where trust is established by combining the run-
time facts with minimal reliance on the verifier’s safety checks.
We apply AEE to ensure the spatial memory safety of eBPF
programs and formally prove its soundness w.r.z. mitigating
the verifier’s soundness bugs and completeness w.r.t. ensuring
safety under the reduced trust base. Our evaluation shows that
our prototype reduces the trusted code base by 4.5x, with an
average runtime overhead of 1.2% and an average increase in
binary size of 4.8%.

1 Introduction

Modern operating system (OS) kernels are designed to be
highly extensible to support diverse user space workloads.
Various kernel functionalities, such as file system [42, 100]
and network management [69], can be dynamically tailored
through loadable extensions. A prominent mechanism facili-
tating such extensions is eBPF [18], which enables user space
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to augment the Linux kernel with customized bytecode ex-
tensions and supports a wide range of applications, including
packet processing [89], security monitoring [38,57,59], and
performance profiling [30,63], among others [48, 53, 62].

Because these extensions are executed in privileged mode
and developed by third parties, they are inherently untrusted
and potentially malicious (see Section 2 for details on the
threat model). Accordingly, various approaches have been
proposed to ensure the safe execution of these extensions,
such as fault isolation [67]. To balance safety, flexibility, and
performance, modern kernels increasingly rely on automated
verification [51]. In eBPF, this is implemented with an in-
kernel verifier [24] that employs abstract interpretation [46]
to analyze each eBPF program systematically and checks
safety properties (e.g., memory safety) before allowing its
execution. As illustrated in Figure 1, the verifier serves as a
fundamental gatekeeper, establishing trust between untrusted
extensions and the kernel.

[ Program ]—'[ Verifier ]SL&'[ Kernel ]

Figure 1: The existing workflow of loading extensions.

The Hidden (Unreliable) Trust. The verifier determines
whether a program is safe by mapping programs to either
safe or unsafe, formally expressed as V : P — {safe,unsafe},
where P is the set of all possible programs. Conventionally, a
program P € P is deemed safe for execution if it passes V’s
verification, captured by:

V(P) = safe = Safe(P) (1

However, this view overlooks a crucial assumption: the pred-
icate Safe(P) relies not only on V designating the program
as safe but also on the soundness of the verifier itself. Hence,
Equation 1 is more accurately framed as:

V(P) = safe A Sound(V) = Safe(P) 2)

In practice, the verifier’s soundness, i.e., Sound(V), is often
taken for granted.
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Figure 2: Workflow of AEE. Programs that pass the verifier are transformed to perform approximation enforcement. Therefore,
V.a is untrusted and executions that deviate from the expected state are terminated, achieving a 4.5x trust base reduction.

To ensure safe execution, the verifier conducts two essen-
tial steps, each requiring correctness for overall soundness.
First, it collects the program state approximation according to
instruction semantics, i.e., approximation transition, denoted
as V.a. The approximation must soundly capture all possible
concrete states using certain abstract domains, e.g., all possi-
ble scalar values of a variable can be captured in the interval
domain [47]. Second, it applies safety checks (V.s) using that
approximation to determine whether each instruction is safe.
Thus, Equation 2 can be expanded into:

V(P) = safe A Sound(V.s) A Sound(V.a) = Safe(P) (3)

where Sound(V.a) and Sound(V.s) denote the soundness of
V.a and V.s, respectively.

In practice, V.s is relatively straightforward: it involves
checking whether certain properties (e.g., pointer offsets dur-
ing memory accesses) remain within safe bounds determined
by the approximation. In contrast, correctly approximating
program states (V.a) is significantly more challenging. It must
account for all possible concrete states across diverse ab-
stract domains. For example, the eBPF verifier tracks vari-
able ranges in five separate abstract domains [71, 77, 91]
and models the stack at a byte-level granularity. Our eval-
uation reveals that V.a constitutes over 83% of the verifier’s
implementation logic, which has led to numerous sound-
ness bugs [8,9,35,36,72]. An unsound approximation can
omit certain reachable concrete states, allowing attackers
to construct malicious programs that exploit such states (de-
tailed in Section 3). Although the verifier may deem such
programs safe using the unsound approximation, their exe-
cution on states omitted from the approximation can intro-
duce severe vulnerabilities, such as local privilege escalation
[10-12,14,15]. Consequently, V.a represents a substantial yet
potentially unreliable component of the trust base.

Substantial efforts have been made to improve the veri-
fier’s approximation transitions (V.a) given the importance of
Safe(P). Researchers have applied formal verification to en-
sure the soundness of specific components, such as the tnum
abstract domain [41,75,77,91,92,97], and have developed
testing approaches that utilize effective testing oracles for
validating the eBPF verifier [23, 43, 64, 85]. Despite these
advances, soundness bugs in V.a persist, often arising from
discrepancies between the verified specifications and the ac-

tual implementations [17,26]. Moreover, because the eBPF
verifier is continually updated to accommodate more com-
plex kernel extensions, the emergence of new soundness bugs
is unavoidable [2, 3,6, 16,28, 37]. This predicament raises
a fundamental question: if the verifier is the gatekeeper of
untrusted extensions, then who will guard the guard? Or, in
the Latin phrase:

Quis custodiet ipsos custodes?

New Perspective. In this paper, we propose to ensure Safe(P)
by reframing how the verifier’s trustworthiness is viewed. Un-
like prior work that aims to confirm Sound (V) in its entirety,
we relax this requirement by explicitly minimizing the hid-
den and unreliable trust placed in the verifier—particularly
in its approximation logic. Our approach strategically rede-
fines which components to trust and untrust, preserving kernel
integrity even in the presence of verifier flaws.

Focusing on the verifier’s two core components, we observe
that: (1) while V.a is inherently complex, the safety checks
V.s are comparatively simple and account for a much smaller
fraction of the verifier’s codebase, and (2) enforcing approxi-
mations at runtime is significantly simpler than constructing
them statically. This leads to our key insight: if runtime ex-
ecution is enforced to remain within the verifier’s statically
approximated state space, then soundness of the approxima-
tion logic V.a is no longer required and untrusted. Instead,
any deviation from the expected state at runtime can be de-
tected and terminated, and other permitted executions must
align with the approximated state, with their safety ensured
by the trusted static check V.s, a much smaller trust base. In
other words, we decouple trust from the approximation logic
V.a by enforcing its outcome at runtime. While the verifier
may still produce unsound approximations, such flaws no
longer compromise kernel safety: any unsafe state omitted
by unsound approximations will trigger the enforcement
that halts the execution. We distill this approach into the
following statement, which modifies Equation 3:

V(P) = safe A Sound(V.s) = Safe(Pgec) 4)

where Safe(P,..) denotes the safety under our enforcement.

Our Approach. Building on our key insight, we propose
Approximation-Enforced Execution (AEE), a novel approach
to ensuring the safe execution of untrusted kernel extensions.



As depicted in Figure 2, AEE transforms a verifier-approved
program P into an instrumented variant P,., by inserting as-
sertions. These assertions enforce that the program’s concrete
execution states remain within the verifier’s statically com-
puted approximations; otherwise, execution is terminated.
When the verifier’s approximations are sound, P,.. proceeds
unimpeded; in cases where unsound approximations arise,
immediate termination on executions with omitted states pre-
vents any adverse impact on the kernel. Since the approxima-
tions are enforced, Safe(P,..) holds provided the associated
safety checks are correct. From a threat mitigation perspective,
malicious adversaries attack the verifier by exploiting states
overlooked by unsound approximations; AEE mitigates such
attacks by enforcing strict adherence to the approximations.

We applied AEE to enforce spatial memory safety of eBPF
extensions by extending the verifier (Section 7 details AEE’s
generality). We begin by formalizing eBPF in a small core
language, which allows us to rigorously (1) identify the set of
operations requiring enforcement, and (2) express AEE’s se-
mantics within the formal framework. Next, we prove AEE’s
soundness w.r.f. mitigating unsound approximations (i.e., ev-
ery termination must indicate a verifier’s bug) and prove its
completeness w.zt. safety assurance (i.e., permitted execution
must be safe) under the reduced trust base. Our evaluation
demonstrates that AEE protects the kernel from a wide range
of malicious eBPF programs exploiting verifier soundness
bugs identified over the past five years. By adopting AEE, we
observe a 4.5x reduction in the trusted code base (i.e., bugs in
those components can no longer compromise the kernel), at
the cost of 4.8% in binary size and 1.2% in runtime overhead.
Our key contributions are as follows:

* We introduce Approximation-Enforced Execution, a
novel mechanism to ensure the safe execution of un-
trusted kernel extensions while substantially reducing
the trust base and mitigating security risks.

* We apply AEE to eBPF for spatial memory safety by
identifying relevant operations and designing enforce-
ment under a formal framework.

* Through a comprehensive experimental study, we show
that AEE provides a much-improved safety guarantee
while incurring minimal overhead.

2 Threat Model

The eBPF subsystem facilitates the dynamic loading of kernel
extensions, allowing fine-grained control and system behav-
ior monitoring without requiring full kernel modifications.
Under typical usage, developers write eBPF extensions and
submit the bytecode to the kernel via a dedicated system call.
Before the program is loaded, the eBPF verifier analyzes the
code to ensure it compiles to the safety requirements, such as
bounded loops and valid memory accesses. Upon successful

verification, the kernel places the program at a designated
hook point, where it executes in the same address space as
the kernel and can observe and manipulate specific events.

The primary concern is that attackers may exploit verifier
flaws to install malicious kernel extensions. In particular, we
focus on logic bugs in the verifier’s state tracking—namely,
unsound approximations—that enable bypassing or confusing
the verifier’s checks. We assume that attackers can craft and
submit eBPF bytecode and aim to exploit the verifier’s flaw
to achieve privileged operations such as arbitrary memory
accesses. Although some Linux distributions disable unprivi-
leged eBPF, requiring capabilities such as CAP_BPF [45, 83],
our assumption remains justified for two primary reasons.
First, real-world deployments commonly enable eBPF in
server or container environments for diverse tasks [38,52,59].
Second, from the perspective of kernel maintainers, the user-
space configurations are not guaranteed; any bug in the veri-
fier may still allow erroneous programs to be loaded, compro-
mising kernel integrity. Consequently, verifier flaws continue
to pose a significant threat to modern systems.

3 Illustrative Example

This section describes how the verifier blocks unsafe exten-
sions, how adversaries exploit its unsound approximations,
and how our approach, AEE, effectively mitigates these risks.

The Verifier. The eBPF verifier utilizes abstract interpretation
to analyze each extension. It examines all feasible control-
flow paths and aggregates potential program states at each
program point, representing them as approximations (V.a). A
program is considered safe if, for every approximation, the
corresponding operation adheres to specific properties (V.s).
The verifier maintains soundness under two conditions: (1)
each approximation encompasses all possible runtime values
a variable may take, and (2) the associated safety checks on
these states are correct. Conversely, if the approximations ex-
clude reachable states, the verifier fails to validate executions
with them, thereby permitting potentially unsafe behaviors.
Figure 3 illustrates an unsafe extension rejected by the
verifier based on sound approximation. At instruction #2, a
logical AND constrains the value of register r2. The verifier
concludes that r2 may only hold {0, 1}, a sound approxima-
tion encompassing all runtime values. It then updates the
approximation according to the semantics of each instruction,
as part of V.a. At #4, the program attempts to load data from
a user-accessible region, with the access size determined by
r2. Given that the verifier has inferred, through its approxi-
mation, that r2 could be an out-of-bounds size (e.g., 255), it
rejects the program via the corresponding safety check V.s.
Although Figure 3 presents a simplified scenario, real-world
eBPF programs are considerably more complex, encompass-
ing intricate operations and diverse state transitions. Accu-
rately validating such behaviors requires faithful modeling of



1: rl = fp-16 ; 16 bytes area

2:r2 &= 1 ; r2elo, 1]

3: r2 += 254 ; M2 €[254, 255]

4: load(uptr, rl, r2) ; unsafe, statically rejected

Figure 3: An unsafe program correctly rejected by the verifier.
fp-16 refers to the stack pointer with a 16-byte offset. Load ()
retrieves data from user-accessible regions (e.g., bpf_map),
denoted as uptr for simplicity.

instruction semantics. Any flaw in this approximation logic
risks overlooking unsafe states, motivating the design of AEE.

Attack. In practice, V.a can become unsound, leading to
states that are reachable at runtime but remain unaccounted
for in the approximation. Such omissions compromise the
validity of the verifier’s safety assessments. Figure 4(a) il-
lustrates this scenario. At #4, r2, with a tracked range of
[254,255], is cast to a signed 8-bit integer (s8) and then sign-
extended to 64 bits. Correctly, this operation should yield a
64-bit range of [u64_max-1,u64_max], as the values in r2’s
range have their sign bits set. However, due to a flaw in the
verifier’s approximation logic [37], the higher 32 bits are
mistakenly zeroed, resulting in an unsound approximation:
[u32_max-1,u32_max]. This oversight excludes reachable
runtime values, e.g., u64_max, from the verifier’s purview.
Consequently, these omitted values escape the verifier’s safety
checks, allowing executions associated with them to bypass
static validation and lead to safety violations

We refer to any execution path involving such omitted
states as an escaped execution, and paths with runtime states
contained within the approximations as checked executions.

Crucially, unsound approximations can be potentially ex-
ploited by attackers. First, they craft an instruction sequence
that triggers the soundness bug, thereby creating an escaped
execution. Second, they carefully design the remainder of the
program such that the verifier still deems it safe, while the
omitted state at runtime enables malicious behavior. In Fig-
ure 4(b), after the faulty sign-extension, the verifier believes
that r2 has zero in its higher 32 bits. At runtime, however,
those bits are set to all ones. The verifier thus concludes incor-
rectly that a subsequent right-shift operation yields a constant
zero, when in fact it produces one. Subsequently, r2 can be
used to control a pointer on the stack: the verifier assumes the
memory operation is safe according to its unsound approxima-
tion, yet in reality, the spilled pointer is overwritten, allowing
an attacker to corrupt memory and escalate privileges. Al-
though a complete exploit may involve more operations to
confuse the verifier, the core principle persists: manipulate
non-contained states in the escaped execution while preserv-
ing a superficially “safe” approximation for the verifier.

AEE as Mitigation. Since accurately approximating program
states involves a large and potentially unreliable codebase,
AEE aims to exclude it from the trust base. The core idea is
that attackers exploit the flaw by manipulating non-contained

Unsound approximation
r2 e [u32_max -1, u32_max]|

| r2 = ub4_max |

S Rl Runtime state

| (@)
; verifier runtime
5: r2 >>= 63 ; r2e|0,0] r2 =1
6: r2 *= 16 ; r2e0,0] r2 = 16
7. *(fp-8) = ptr ; ptr spill at fp-8..
8: load(uptr,rl,r2) ; zero size 16 bytes
9: rl = *(fp-8) ; ptr malicious_ptr
(b)
Checked Escaped
Execution Execution 0
8: assert r2 == ; enforce r2 e [0,0]
; terminate r2 = 16

(c)

Figure 4: Exploit program and AEE’s enforcement. Com-
ments after each semicolon show the verifier’s approximation
(blue) and the actual runtime state (green).

states; mitigation, in turn, involves permitting only checked
executions and terminating escaped ones.

Concretely, once a program passes the verifier, rather than
allowing immediate execution in the kernel, AEE trans-
forms the program by inserting assertions that strictly en-
force the runtime states to remain within the approxima-
tion—regardless of whether those approximations are sound.
When an (escaped) execution diverges from the approxima-
tion, it is terminated as its safety is unknown. Figure 4(c) illus-
trates this process. AEE injects an assertion before using r2
as a memory access size parameter. Since the verifier checks
access safety assuming r2=0 (the sole state encompassed by
the unsound approximation), the assertion permits only this
checked execution. Consequently, although the exploit pro-
gram may be loaded, it is immediately terminated during any
escaped execution where r2=16 (a state omitted from static
checks), effectively thwarting the attack. Under AEE, only
checked executions with contained states are permitted. Thus,
execution remains safe, provided the safety checks on the
enforced approximation are correct. The complex approxi-
mation logic is no longer trusted—its outputs are enforced,
significantly reducing the trust base.

Applying AEE to enforce specific properties poses two
main challenges: (1) identifying operations that require en-
forcement and (2) determining the property each enforcement
must maintain. We address these by formalizing eBPF’s core
semantics, enabling systematic identification of enforcement
points and rigorous reasoning about enforcement effects. The
formalization also decouples AEE from specific implementa-
tions, allowing its adoption by any conforming language.



cmd i=w:=E |w:=g *p| *p:=g x| w:= func(x,y)
| assume(B) | w:=mem K
E:=K|x|x+y|x—y
Bu=x=y[x#y|x<y

Figure 5: The syntax of the core eBPF language. K is a con-
stant, sz can only be one, two, four, or eight bytes, and func
represents a function call.

t € Tag = Tyem U{T5}

v € Value = Tag X Z

a € Address = Toyem X Z

c € Cell = Address x Size

e € Env = Register — Value
u € Mem = Cell — Value

o € State = Env x Mem

Figure 6: Semantic domains. 7., represents an unbounded
set, and each element in it is a unique memory tag, and 7Ty is a
tag shared by all scalar values.

4 The eBPF Language

This section formalizes eBPF into a small core language,
which captures the essence of eBPF programs while abstract-
ing away certain details. To maintain consistency, we follow
most notations adopted by Gershuni et al. [51] whenever pos-
sible. However, their formalization aligns with the verifier’s
analysis algorithm. For instance, concepts such as shared and
private memory are not reflected in program execution. We
adapt the formalization to more closely match the semantics
of real execution and extend it to support the call instruction.

Syntax. Figure 5 illustrates the syntax of the core language.
An eBPF program is represented as a control graph, with each
edge annotated by a command. The symbols x, y, w, and p
represent meta-variables. Primitive commands conduct arith-
metic operations, access memory in sizes of one, two, four,
or eight bytes, and invoke a set of predefined helper func-
tions. We abstract the function call into a form that takes two
parameters, sufficient to represent both basic and memory-
accessing calls, in which case the memory address and access
size are provided in x and y, respectively. The assume com-
mand filters states not satisfying the predicate B, serving as an
abstraction for the conditional jump. Programs obtain pointers
statically via the mem command, which associates a memory
region of known size K with w.

Machine State. Figure 6 defines the machine state, which
consists of a tuple 6 = (e, u), representing the environment
and memory state. e maps a register to its value and u map a

region size

mem : llllllllllllll
l T 0)
off 'T " cell size
Y. . Region
s (mem,;, off)!
.S---.l__ff_)_' .......... Cell
----- Register

Figure 7: An illustrative example of register, cell, and region.

memory cell to its value. Programs use a fixed set of registers,
Register = {r0,...,r10}, ranged over by the meta-variables.
The machine is stuck when evaluated outside the domain.

Registers and memory cells store tagged values, repre-
sented as (7,n), where n € 7Z is the actual value, and 7 € Tag
is a tag that differentiates the semantics of the value. The
function e() takes a register name and returns its value. Ad-
ditionally, e, () and ¢, () are helper functions that extract the
value and tag part of a register, respectively. Values are cat-
egorized into two types: scalar and address (pointer). The
scalar value is (Ty,n), where Ty and n represents the scalar tag
and the value, respectively. An address value is tagged with a
unique identifier of the memory region they point to, from the
unbounded tag set 7., and n represents the offset within
the memory region.

As shown in Figure 7, each program consists of a set of
memory regions, which are disjoint, contiguous, and byte-
addressable, with each region having a unique identifier and
a known size. The helper function sizeof () takes a memory
tag and returns its byte size. A memory cell is defined by
an address and a size value, where the address specifies the
region and offset, and the latter represents the size of the
cell in bytes. The size is constrained to one, two, four, or
eight bytes, corresponding to valid memory access sizes. The
function u() retrieves the value of a cell, and the actual value
and tag of a cell ¢ are denoted as uy,(c) and w (c), respectively.

Both rl1 and r10 store an address value in the initial
machine state. Additionally, ¢ = {(i(c),i) | pn(c) <i <
Un(c) + sz} denotes the set of addresses within a memory
cell ¢ of size sz, which is used to determine whether two cells
¢; and c; overlap, i.e.,, ¢;N¢; # 0 indicates an overlap.

Operational Semantics. Figure 8 presents the effect of each
command on the machine state, expressed in the style of small-
step operational semantics. Intuitively, a program performs
arithmetic operations between registers, stores and loads val-
ues to and from memory cells, invokes a limited set of func-
tions, and follows control flow based on the filter conditions.

The assignment commands associate an immediate value
or the value from the source register with the destination regis-
ter, while the memory state u remains unchanged (Equations
5-6). The operands of arithmetic can be either a scalar or an
address value. Arithmetic between two address values results
in an arbitrary scalar value, which is omitted from the rule.
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where t € Ty A sizeof (t) = ©)

(w:= func(x,y),0) = (e[w—v,x— L,y L], 1)

where (v, ¢/') = eval(func, e(x), e(y), u) 10
(xp =5 x,0) = (e, i) (11

where u' = Store(u, (e(p), s2), e(x))
Wiz %p, ) = (elw > u(©)], 1)

where ¢ = (e(p), 52) (12)
(assume(x =y), 6) =0 ife(x) =e(y) (13)
(assume(x # y), 6) = © ife(x) #e(y) (14)
(assume(x <y),0) =0© if e,(x) <en(y) (15)

Figure 8: Operational semantics. Each rule defines a state
transition in the form of (cmd, o) = o'

Storelys, . (t,n)) =l [c > (1, )
where ' = ufco — L | co € dom(u) NcgNE # 0]

Figure 9: The Store() helper sets the cell to the value and
resets all the overlapped cells.

For operations involving a scalar and an address value, we
constrain the address to be the left operand. Consequently, the
arithmetic command sets the tag of the destination register as
the left operand, i.e., ¢;(x), and the value is computed using
the values of both operands (Equations 7-8). The mem com-
mand obtains a memory region with tag ¢t € 7., and size K,
storing the address value (¢,0) in the register (Equation 9).
The func command invokes a function using the input regis-
ters and stores the result in the destination register. The helper
function eval() evaluates the function with the parameters and
the memory state, and returns both the result and the updated
memory state. The source registers are set to arbitrary scalars
to simulate the side effects of the call (Equation 10). When x
contains an address, y represents the memory access size.

The semantics of the store command are defined using the
Store() helper (Equation 11). Store() takes the memory state,
the target cell ¢, and the value, updates ¢ with the value, and
resets all overlapping cells (Figure 9). The load command re-
trieves the value associated with a cell and returns an arbitrary
scalar if the cell is not in u (Equation 12). The assume com-
mand filters out states that do not satisfy the given predicate,
without side effects on the satisfying states. The comparisons
are restricted to values with the same tag (Equations 13-15).

S Approximation Enforced Execution

This section describes and contrasts AEE with the existing
approach and its application to ensure memory safety.

5.1 The Essence of AEE

The execution of an eBPF program can be abstracted as a
state transition on each command (cmd,c) = ¢’ as defined
in Section 4. To ensure the safe execution of untrusted kernel
extensions, we adopt the following notation to represent the
safety condition that must be held at each command:

Safe(cmd, G) (16)

For instance, the safety condition for memory access requires
that the operand must be an address value and the access must
be within bounds. The core language, consistent with eBPF’s
design, does not enforce such conditions in its operational
semantics; instead, the safety is provided by the verifier.

The Verifier. eBPF adopts an abstract interpretation-based
verifier as a gatekeeper, i.e., programs passing it are deemed
safe for execution. The verifier ensures the safety conditions
by collecting the state approximation at every program lo-
cation, denoted as ¢*, and adapts the semantics shown in
Figure 8 to conduct the safety check on the approximation,
represented as Safe” (cmd,c*), before every transition:

o Safe®(cmd,c")

. (17
1 otherwise

(emd,c") =4 {

Take w :=,, *p for instance. The verifier approximates the
range of the offset of p and verifies if the access specified by
the range is within bounds; otherwise, the verification fails.
Next, it interprets the command in the corresponding abstract
domains and transfers 6" to 6%, simulating the command.

With this approach, Safe(cmd, ) holds only if (1) ev-
ery concrete state is contained in the corresponding ap-
proximation, and (2) the safety check conducted on the ap-
proximation implies that on the concrete states. Therefore,
Sound(V.a) A Sound(V.s) in Equation 3 can be further refor-
mulated as Equation 18, where (") represents the set of
concrete states contained in 6*:

Vo € y(6") ((cmd, o) = & A (cmd, ") =4 ")
— ¢ ey(c”) (18
ASafe(cmd, o)

Ideally, since the verifier traverses each potential path and
each command is checked against the over-approximation,
the program is safe once it passes the verification. In practice,
soundness bugs continue to surface in the state approximation
procedure due to its inherent complexity and frequent changes
and improvements, making it unreliable.



Our Approach. AEE is a novel concept to provide strong
safety guarantees for the execution of untrusted extensions.
First, rather than using the verifier as a gatekeeper (thus trust-
ing it can correctly approximate all the concrete states), AEE
views the verifier as a safety statement generator. More con-
cretely, for a program P € P, AEE first uses the verifier for
verification, yet V (P) = safe does not imply the program is
safe, but produces a safety statement for each command:

Vo € y(c") Safe®(cmd,c") = Safe(cmd, o) (19)

From the perspective of AEE, the verifier does not claim
all possible concrete states are contained but tells that each
concrete state G that is already approximated in 6* is checked
to be safe for execution, and more importantly, there could
exist a reachable concrete state not contained, i.e., 36 ¢ y(cs#),
and the safety with non-contained states is undetermined.

Therefore, after passing the verifier, AEE further transforms
the program P to P, to enforce the concrete states during
the execution to remain within the approximation, i.e., non-
contained states result in termination. AEE essentially adapts
the semantics with a containment check:

6 oey(o*)A(cmd,c) =o'

. (20)
1 otherwise

(emd, G) = gee {
Figure 10 illustrates AEE’s effects on all the verifier-approved
programs, where four cases could happen:

¢ #1: Safe programs, accepted by sound approximations,
execute normally as every reachable state is permitted.

* #2: Safe programs, accidentally accepted by unsound
approximations, are terminated when omitted states oc-
cur, a rare case explicitly indicating a soundness bug.

» #3: Unsafe programs, accepted due to incorrect safety
checks (V.s), are not aborted, a rare case violating the
assumption of AEE.

* #4: Unsafe programs, incorrectly accepted due to un-
sound approximations (thus executed with the exist-
ing approach), are terminated by AEE once the non-
contained states are encountered.

Section 7.3 illustrates #2 and #3 with concrete examples. AEE
only terminates a program in cases #2 and #4 due to unsound
approximation. Hence, AEE is sound w.r.¢. mitigating sound-
ness bugs, i.e., termination must indicate verifier flaws.

By aborting escaped executions with non-contained states,
the effects of potential unsound approximations are effectively
eliminated, and the kernel remains unaffected even in the
presence of potential bugs. With AEE, Safe(cmd, ) holds
as long as the safety check conducted on the approximation
implies it, i.e., Equation 19. Since the safety check is much
more straightforward and involves a smaller code base than
the state approximation, AEE provides improved safety with
a significantly reduced trust base.

V(P) = safe

Executed Aborted
on(on) r)om
Safe Unsafe

Figure 10: AEE’s effects on the verifier-approved programs
(V(P) = safe). Programs represented by #1 (safe) and #3
(unsafe) in the blue area are executed, while #2 (safe) and #4
(unsafe) in the grey area are aborted.

5.2 Applying AEE for Memory Safety

Unsound approximations can arise from various components,
e.g., range analysis and path pruning. Regardless of origin,
attackers exploit these flaws ultimately to overwrite kernel
memory, e.g., credential structures. By enforcing that exten-
sions access only permitted regions, we significantly restrict
their impact on the kernel. Therefore, rather than analyzing
each verifier component, AEE enforces memory safety as a
sink point for soundness bugs—blocking malicious accesses
eventually instead of considering individual bugs. We focus
on spatial memory safety, as temporal issues are limited in
eBPF: unprivileged users cannot perform dynamic allocations.
Applying AEE involves three steps: (1) define the safety
conditions for related commands, (2) determine the safety
statements produced by the verifier for those commands, and
finally (3) enforce the approximations based on the statements
and demonstrate the safety conditions defined in (1) hold.

Memory Safety. We now define the meaning of memory
safety for the core language by first identifying the relevant
commands that modify or access the memory state. Accord-
ing to the operational semantics shown in Figure 8, only the
memory load, store, and helper call commands may alter or
access the memory state , i.e., the state keeps the same and is
not visited before and after the transitions of other commands.
For instance, the arithmetic and conditional commands oper-
ate on the registers only, and u does not change in Equations
5-9 and Equations 13-15. Therefore, the memory safety de-
pends on the safe execution of the xp :=g, x, w :=¢; *p, and
w = func(x,y) commands.

We now define the safety conditions for those commands.
We use InBounds() to denote the condition that memory ac-
cess must be in bounds, and the function takes an address
value (¢,n), and access size sz as inputs:

InBounds((t,n),sz) = 0<n<sizeof(t)—sz (21)

For memory load (w :=g; *p), and store (xp :=j; x), the safety
conditions are: (1) the register contains an address value, and
(2) the access is within the bounds, denoted as:

e;(p) € Tnem NInBounds(e(p),sz) (22)



For w := func(x,y) that conducts memory access, the first
register x consists of the address value, and y represents the
access size. Therefore, the safety conditions, in this case, are:
(1) the value of x is an address, and (2) the potential accessed
memory range by the function must be in bounds, denoted as:

e (x) € Tem N InBounds(e(x), e, (y)) (23)

Equation 22 in conjunction with Equation 23 describes the
meaning of memory safety for the core language.

Safety Statements. The safety statements obtained from the
verifier essentially state under what approximations the com-
mand is safe to execute. An approximation is an abstract value
derived by the verifier within an abstract domain, which is

v e Value* = Tagx Z x Z

An abstract value is also a tagged value and consists of two
parts: (1) the tag, which is from the same domain Tag as
concrete values, (2) the value range (lo, hi) € Z x Z. The value
range represents the scalar range if the tag is T§; otherwise, it
represents the range of the pointer offset. We adopt the same
set of notations as in the concrete domain with the # mark
to denote the corresponding notations in the abstract domain,
and additionally, we use €/ () to ¢ () to obtain the lower and
higher bound of the verifier’s range, respectively.

From the perspective of AEE, the safety statement pro-
duced by the verifier for the memory load and store commands
W= XD, ¥P (=g X is:

e(p) = et( ) € Tem \ €] (P) <en(p) < eﬁ(p)

(24)
AnBounds" (e (p),sz) = InBounds(e(p),sz

The first two predicates correspond to Vo € y(c*) in Equa-
tion 19, and InBounds" () function corresponds to the safety
check Safe#() conducted by the verifier for memory accesses.
The statement indicates that for an address value p, whose tag
is the same as the verifier’s tracked tag, and offset is between
the collected lower and higher bounds, the memory access
with sz bytes is checked to be safe, i.e., InBounds#() implies
InBounds() under this presumption.

When the first register is an address, the safety statement
produced for the call command w := func(x,y) is:

ef(y) <enly) <e
A er(x) _et( ) € Tmem/\el( ) <en(x) <

A InBounds® (e* (x), ¢! (v)) = InBounds(e(x),e,(y))

(

Equation 25 states that, for a function call that accesses the
memory pointed by x, where the tag of x matches the verifier’s
tracked tag and the offset of x and the value of y are between
the collected bounds, the access is checked to be safe.

Enforcing Approximation. With the statements produced,
AEE transforms the program P to P,., with assertions to en-
force the concrete states to remain within the approximations,

thereby ensuring the predicates of statements always hold.
We describe P, by defining its operational semantics based
on the semantics of P, and we show how each transition rule
ensures those predicates hold.

Offset Enforcement. First, we ensure, for an address p, the
predicate ef (p) < e,(p) < ef(p) holds, i.e., enforcing the
pointer offset to remain within the verifier’s tracked range.
Conceptually, one can assert the offset e,(p) before its us-
age, which in this context includes the memory load, store,
and call commands. However, a pointer’s offset needs to be
computed by subtracting the runtime pointer value from its
base address. Since the base address of a pointer is unknown
during verification, directly inserting such a subtraction when
transforming the program is infeasible. Given the offset is a
result of pointer arithmetic commands, e.g., w := x+y, we
can ensure the above predicate holds by enforcing that the
offset of w is within the verifier’s range after every arithmetic,
i.e., enforcing e (w) <= e, (w) <= el (w), where €' (w) and

’z’ (w) are the verifier’s range after the arithmetic. Therefore,
we conduct the following enforcement:

—(ef'(w) —€f (x) < en(y) <
(W:=x4y,06) =g L

e} (x) € Tem eﬁ/(w) - eﬁ(X))
(26)
For w := x+y, when the verifier’s tracked tag of x is a
memory tag (e (x) € Tyem), the semantics is adapted in Py,
to terminate the program when the value of y (the added
offset) is not within following enforced range:

ef'(w) — €[ (x) < ealy) < € (w) — €], (x)

Given the offset of the source operand x is already enforced:

e (x) <= ea(x) <= ¢} ()

Hence, e}’ (w) <= e,(w) = en(x) + ea(y) <= € (w) holds,
and the offset of w is enforced. Importantly, Equation 26
can be encoded directly with y (a scalar value) and the veri-
fier’s ranges (known during the transformation) without re-
quiring the base address of w. In comparison with Equation
7, Equation 26 enforces that the added offset y must change
the pointer from one tracked range to another tracked range.
Similar enforcement also applies to the subtraction (Equation
8), both jointly enforce the pointer offsets.

Tag Enforcement. Next, we ensure the predicate ¢;(p) =
é*(p) € Tem holds, i.e., enforcing that p stores an address
with the same tag as tracked by the verifier. The tag of a
value is determined after the assignment or the mem com-
mands. Most commands, e.g., the arithmetic and conditional
commands, do not change the value tag according to the se-
mantics shown in Figure 8, and thus the tracked tag by the
verifier remains the same as that during the execution, and
we do not need to insert assertions for those cases. However,
the tag and offset may be altered after storing and loading
an address value to and from a memory cell, since memory



accesses may overlap. The approximation may differ with
runtime due to the verifier’s soundness bugs in those cases.
Therefore, for w :=;, xp, we need to ensure e(w) aligns with
¢*(w), and the tag of w after loading must be the same as the
verifier’s tracked tag. The enforcement is represented by the
following equations:

ef (x) € Tnem (1',8') = Store' (1,8, (e(p), 52), e(x))
<*p ‘=iz X,G> = aee (6,‘[1/76/[(6(])),52) = 6#()6)])

e (W) € Tnem  8(e(p),sz) # 1 (e(p), s2)
<W sz *pa6> = aee 4

@7

(28)

We extend the machine state with an additional map & to as-
sociate memory cells with the verifier’s tracked address value.
Intuitively, 8 mirrors the verifier’s tracked value of memory
cells during the execution, and the recorded value in § is used
to check against the tracked value when loading from cells.
More concretely, if the verifier concludes the tag of a loaded
value is a memory tag, then there must be a previous store
command saving it to the cell. Therefore, when storing an
address value to a memory cell, the verifier’s tracked value
is associated with the cell in 8 (Equation 27) first. When per-
forming normal memory store operations, the original Store()
helper is adjusted to take & as input, and in addition to updat-
ing the memory state y, it resets the overlapped cells in d to
reflect the effect of the store to the recorded values:

Store'(1,8.¢,(t,n)) = (4,8
where & = 8[co — L | co € dom(8) AcgNe #£ 0] (29)
i = Store(uc,(1,n))

Subsequently, when loading to a register w and if the verifier
believes an address is loaded into w, the verifier’s tracked
value of w is checked against the recorded value of the cell in
8 (Equation 28), which enforces the two must be the same;
otherwise, the program is aborted. Therefore, Equation 28 and
Equation 27 enforce ¢,(p) = ef (p) € Tyem during execution.

Size Enforcement. Based on the aforementioned enforce-
ment, the presumptions of Equation 24 are enforced; we need
to further enforce e (y) < e,(y) < ef(y) for Equation 25, i.e.,
ensuring the value of the size register passed to a function call
is bounded within the tracked range:

el (x) € Tyem _‘(8?()’) Sen(y) < 62()’))
(w:= func(x,y),0) =gee L

(30)

For w := func(x,y), when the function accesses the memory
pointed by x, Equation 30 enforces the size value in y to be
within the verifier’s tracked range.

The semantics of store and func in P, are adapted to
update & accordingly, and for all the other commands, the
semantics under AEE remain the same as those shown in Fig-
ure 8, where 8 keeps the same before and after the transition:

(cmd, (e,)) = (¢',1/)

(emd, (e,14,0)) =gee (¢/,4/,0) Gh

Theorem 1. Equation 22 and Equation 23 hold under the
approximation enforcement, provided InBounds* () is sound.

Proof. Intuitively, Equation 27 and Equation 28 ensure that
the tag of an address during the execution matches the ver-
ifier’s tracked tag, Equation 26 ensures an offset within the
tracked range. Therefore, each memory access is enforced to
target a pointer with a restricted offset. Equation 30 enforces
the size value passed to a call is within range. Hence, AEE
is complete w.r.t. ensuring memory safety and the permitted
execution is safe, assuming the safety check InBounds*() is
sound. More concretely, we prove each predicate in Equa-
tion 22 and Equation 23 holds, thereby proving the equations:

* For ¢,(p) € Tyem, only storing and loading an address
value to and from a memory cell may alter the tag,
and Equation 28 and Equation 27 enforce 8(e(p),sz) =
we(p),sz) Au(e(p),52) € Tyem, i.e., the tag during ex-
ecution must match as the verifier tracked tag while the
latter is a memory tag; hence, the predicate holds.

For 0 < e,(p) < sizeof (¢;(p)) — sz, Equation 26 enforces
all the offset added to or subtracted from the address
value remain within the verifier’s tracked range, thus
ef(p) < en(p) < €l (p) holds, i.e., the pointer offset be-
ing within the verifier’s range. Based on Equation 24,
InBounds® (e* (p),sz) = InBounds(e(p),sz) and the
former holds, the predicate holds.

* For 0 < ¢,(x) < sizeof (e;(x)) — en(y), Equation 30 en-
forces the value of the size register remains within
the tracked range for the call command. Similarly,
InBounds® (e* (x),ef(y)) = InBounds(e(x),e,(y))
and the former holds, hence the predicate holds.

O

5.3 Implementation

We implement our AEE prototype, which is publicly avail-
able [84], by modifying the eBPF verifier in the Linux kernel.
Figure 11 illustrates three examples, one for each type of
enforcement. In general, to apply AEE, one can first record
the verifier’s approximations and then transform the target
program by adding enforcement assertions.

Our prototype involves two major parts: (1) recording the
verifier’s approximations during the verification in struct
bpf_insn_aux_data, an auxiliary structure storing per-
instruction state, and (2) inserting assertions in the program
based on the recorded information, implemented as rewriting
passes in bpf_misc_fixups (), a standard post procedure
after the verification. The offset (Equation 26) and size en-
forcement (Equation 30) are realized as follows. Since offset
values and pointer types are restricted to remain the same
across paths for eBPF programs [34], ranges and tags are con-
sistent. We record the verifier’s tracked ranges for the pointer



offset and size register in the auxiliary structure and then in-
sert eBPF instructions that check the runtime value against the
collected range and enforce them before the corresponding
pointer arithmetic and call instructions.

We utilize the ARM pointer authentication mechanism [33]
to implement the conceptual map &. The mechanism provides
two primitives pac () and aut (), where the former signs a
pointer with an additional modifier, and the latter decodes a
signed value with the same modifier, and any changes in the
signed value cause an authentication failure. In our approach,
when the verifier concludes a pointer is spilled to memory,
we embed the verifier’s approximation into the pointer’s sig-
nature, thus incurring no additional space overhead. Upon
loading a pointer, the stored signature is authenticated to ver-
ify consistency with the verifier’s approximation. We discuss
the associated security implications in Section 7. More con-
cretely, for a store command, if the verifier’s tracked tag of
the source register is a memory tag, we record the approxi-
mation in the auxiliary structure. During just-in-time (JIT)
compilation, we then emit a hardware pac () instruction that
signs the pointer (i.e., Equation 27) using the tracked value.
Next, for a load instruction, if the verifier’s tracked tag for
the corresponding stack slot is a memory tag, we mark the
destination register for enforcement. In the JIT phase, we
inject aut () to authenticate the pointer; any mismatch leads
to an authentication failure, thereby implementing the tag
enforcement. Finally, because the verifier limits tag tracking
to stack operations, this rewriting pass only considers pointer
spill and fill within the stack memory.

6 Empirical Results

In this section, we evaluate the effectiveness of AEE. All
experiments were conducted on an Apple M1 Pro processor
with 8 cores and 16 GiB of memory. The M1 processor was
selected for its support of ARM pointer authentication. Our
AEE implementation is based on the Linux kernel version 6.7.
For evaluation, we compiled the kernel with our modifications
using the standard eBPF configurations [20,21].

6.1 Effectiveness of AEE

We evaluate the effectiveness of AEE by quantifying its
trusted code base and applying it to defend against real mali-
cious programs exploiting soundness bugs in the verifier.

Reduced Trust Base. The existing approach assumes the
soundness of the verifier. In contrast, AEE minimizes this
assumption by relying primarily on the verifier’s safety-
checking procedures. We quantify the lines of code in AEE’s
trust base and compare this with the existing approach.

The verifier ensures memory safety by tracking pointer
offsets, size values, and tags across abstract domains, subse-
quently validating memory accesses based on this informa-

Program Approximations Runtime States
Q: *(ue4*)(rlo -40) = -1||0: fp-40 = u32_max | |0: fp-40 = u64_max
1: rl = *(ue4*)(rle -40)| (1: rl = u32_max 1: rl = ub4_max
2: rl >>= 63 2: rl =0 2: rl =1
3: rl += 1 3: rl =1 3: rl =2
5: r2 =rilo 5: r2 =fp 5: r2 =fp
assert rl == -8 Terminated
6: r2 +=rl

(a) Offset Enforcement. The verifier loses sign information after
instruction #0, and at instruction #4, the tracked value of r1 is -8,
whereas the runtime value is -16. Since the access is only validated
with r1=-8, the assertion inserted by AEE terminates the program
upon the inconsistency, thereby preventing the exploit’s attempt.

Program Approximations Runtime States
Q: *(ue4*)(rlo -40) = -1|(0: fp-40 = u32_max | (@: fp-40 = u64_max
1: rl = *(u64*)(r10 -40)|(1: rl = u32_max 1: rl = ub4_max
2: rl >>= 63 2: rl =0 2: rl =1
3: rl += 1 3: rl=1 3: rl =2
5: rl =rl0 -16 5: rl = fp-16 5: rl = fp-16
assert r2 == 1 Terminated
6: loadCuptr, ri, r2)

(b) Size Enforcement. The program invokes a helper at instruction
#6, which loads external payloads into the region pointed to by r1
with a size specified by r2. AEE enforces that the value of r2 must be
1, the tracked value verified to be safe at instruction #4. The exploit
attempts to corrupt a pointer with the helper call, but AEE aborts the
execution when the size value diverges from the approximation.
Program Approximations Runtime States

Q: rl = map_ptr Q: rl = map_ptr 0: rl = map_ptr
pac(rl, map_ptr)

1: *(u64*d(r10 -9) = rl [|1: fp-16 = map_ptr||1l: fp-16 = T,

Terminated

aut(r2, map_ptr)

(c) Tag Enforcement. Both the tracked and runtime tags of r1 are
identical at instruction #1. AEE inserts a pac () instruction before
it to record the tag stored in the memory cell fp-9. Due to the
soundness bug, the verifier incorrectly allows the pointer spill and
mistakenly treats the tracked tag of fp-16 as a memory tag, permit-
ting subsequent unsafe accesses. The inconsistency is detected by
aut (), preventing the unsafe dereference of r2.

Figure 11: Examples of AEE’s enforcement: each subfigure
shows an unsafe program, the unsound approximations, and
runtime states. AEE terminates all the malicious programs,
keeping the kernel unaffected.

tion. Consequently, the trust base of the existing approach
encompasses both the approximation tracking and the asso-
ciated checking procedures. AEE guarantees memory safety
by enforcing pointer offsets, tags, and size values within the
approximation, which does not depend on the tracking proce-
dures but relies exclusively on the checking routines and AEE
itself. The related approximations primarily involve range
analysis, branch analysis, and stack state tracking. For the
safety checks, the verifier mainly uses check_mem_access ()
and associated routines.



Table 1: Routines related to ensuring memory safety. The existing approach assumes the soundness of both the checking and
tracking routines, totaling 5,068 lines of code, while AEE relies mainly on the safety check, achieving a 4.5x reduction.

Routine/Component ‘ Description

Lines of Code ‘ In Trust Base

|
AEE Routines | Enforce pointer offset, tag, and size approximations | 258 | v
check_mem_access () ‘ General routine invoking specific access checks based on region type ‘ 240 ‘ v
check_mem_region_access () ‘ Validates memory region access using variable offsets for specified sizes ‘ 53 ‘ v
check_stack_access_within_bounds () ‘ Ensures stack accesses are within allocated bounds ‘ 57 ‘ v
Other Access Checks ‘ Additional checks for various region types, including check_map_access (), efc. ‘ 517 ‘ v
Range Analysis ‘ Determines ranges of pointer offsets and scalar values across five abstract domains ‘ 1,824 ‘ X
Branch Analysis ‘ Identifies execution paths and updates ranges of scalars or offsets ‘ 1,372 ‘ X
Stack State Tracking ‘ Tracks the contents of each stack slot following load and store instructions ‘ 1,005 ‘ X

Table 1 presents the relevant routines. The existing ap-
proach assumes the soundness of these routines, totaling 5,068
lines of code. In contrast, AEE relies only on its rewrite passes
and the safety checks, achieving a 4.5x reduction in the trust
base. Generally, tracking program states across different ab-
stract domains is complex, amounting to 4,201 lines of code,
whereas performing safety checks based on the approxima-
tions is relatively straightforward, involving merely 867 lines,
as shown in Table 1. By enforcing approximations, AEE sig-
nificantly reduces the trust base.

Improved Safety. We evaluate AEE’s capability to main-
tain kernel integrity even in the presence of soundness bugs
outside the trust base. To this end, we collected all publicly
available malicious eBPF programs that exploit unsound ap-
proximations over the past five years, resulting in a set of
seven programs, each aiming to achieve local privilege esca-
lation (LPE). Table 2 lists these soundness bugs. We executed
these exploit programs to observe whether AEE terminates
their execution, thereby eliminating potential security issues.

With the existing approach, these malicious programs were
loaded and executed due to the verifier’s soundness bugs, ul-
timately achieving LPE. These vulnerabilities arise because
soundness bugs in the verifier’s approximations allow con-
crete states to extend beyond intended bounds. Malicious
programs exploit this discrepancy to generate non-contained
states and craft unsafe operations on them, while the ver-
ifier erroneously validates these operations using unsound
approximations. In contrast, AEE permits the loading of these
programs but terminates their execution via the inserted asser-
tions once the runtime state diverges from the approximation.
Consequently, AEE effectively prevents all malicious attempts
by them. Figure 11 illustrates three examples.

Future Exploits. Although our evaluation is constrained by
the number of publicly available malicious programs, AEE
can defend against future malicious programs exploiting bugs
outside the trust base (Table 1). We have provided a formal-
ization of AEE by specifying its effects within the operational
semantics. Supported by our proofs, the formalization demon-
strates that our application of AEE is complete by design w.r1.
ensuring memory safety under the reduced trust base, i.e.,

Table 2: Soundness bugs in the state tracking with publicly
available exploits over the past five years.

CVE/Fix Commit \ Bug Description
CVE-2020-8835
CVE-2020-27194 ‘ Use of incorrect range in an abstract domain
CVE-2021-3490

‘ Incorrect optimization of arithmetic operations

‘ Improper extension of upper 32-bits

CVE-2021-31440 ‘ Faulty range refinement procedures
CVE-2022-23222 ‘ Incorrect nullable pointer arithmetic
CVE-2023-2163
811¢363645b3

‘ Improper pruning of unsafe states

‘ Incorrect immediate value spilling

further malicious programs will be terminated, once escaped
execution with non-contained states occur.

6.2 Performance Impact

We evaluate AEE’s overhead by measuring its impact on
verification time, binary size, and execution time. To evaluate
each enforcement, we apply them individually and load the
programs with and without AEE for comparison.

Dataset. To comprehensively evaluate AEE, we compiled a di-
verse dataset of 1,141 eBPF programs, averaging 1,139 bytes
in program size, including (1) Linux-Progs: general-purpose
eBPF programs collected from the Linux repository [23] and
the dataset by Gershuni et al. [51], (2) Linux-Bench [19]:
benchmark programs to assess memory operation throughput,
(3) Filter [27]: CPU-intensive packet filtering programs
with standard workload, and (4) Katran [31]: a production,
performance-sensitive load balancer. This dataset encom-
passes representative real-world programs covering various
scenarios, ensuring a robust evaluation.

Binary Size. Table 3 presents AEE’s impact on binary size.
The All column indicates that all enforcement mechanisms
are enabled, while the remaining columns correspond to in-
dividual enforcement. With all enforcements enabled, 28.8%
(329 programs) exhibit an increase in binary size, while the
rest of the programs remain unaffected. Although the high-
est observed increase is 30.3%, the absolute size increment



Table 3: AEE’s impact on binary size. Impacted shows the
percentage and count of programs affected by the enforce-
ment. Max represents the maximum increase in absolute and
percentage terms. Impacted avg illustrates the average in-
crease for the impacted programs, while Overall avg shows
the average increase considering all programs.

Table 4: AEE’s runtime overhead, measured in nanoseconds
(ns) for Linux-Progs and Katran (per packet), thousand
operations per second (fops) for Linux-Bench, and thousand
packets per second (tpps) for Filters. A dash (-) indicates
that no programs in the benchmark require the enforcement.

Benchmark | All | Offset | Tag | Size

| Al | Offset | Tag | Size

Impacted (%) | 28.8% (329) 6.8% (77) 6.4% (73) 22.5% (257)
Max (%) | 30.3% (80/264) | 22.2% (32/144) | 30.3% (80/264) | 22.2% (32/144)
Impacted Avg | 4.8% 1.6% 0.7% 2.6%
Overall Avg | 1.4% 0.5% 0.2% 0.7%

remains minimal at 80 bytes. The average increase among
affected programs is 4.8%, while the overall average increase,
considering both affected and unaffected programs, is 1.4%.
The low impact on binary size introduced by AEE aligns
with our expectations, which can be attributed to three pri-
mary factors. First, arithmetic instructions in eBPF programs
predominantly operate between scalar values or between a
pointer and a constant offset, e.g., sourced from struct field
access. Offset enforcement only inserts assertions before arith-
metic instructions involving a pointer and a variable. Second,
spilling and filling pointers to and from the stack are restricted
to users with specific capabilities [45, 83], resulting in infre-
quent occurrences and thus requiring fewer tag enforcements.
Third, the proportion of call instructions within programs is
low, and only a limited number of helper functions incorporate
size parameters [22]. Collectively, these factors contribute to
the negligible increase in binary size observed with AEE.

Execution Time. Measuring the runtime overhead of eBPF
programs poses several challenges: (1) they are typically small
and execute within nanoseconds in the kernel context, and (2)
they are attached to various hooks and can only be triggered by
specific workloads. To address these challenges and minimize
potential inaccuracies, we leverage existing infrastructure,
workloads, and benchmarks to evaluate AEE.

Workload Setup. For programs in Linux-Progs with avail-
able driving workloads, we execute them in tight loops and
utilize eBPF’s performance monitoring support [25] to mea-
sure average execution time. This approach was applied to
a subset of 212 programs within this dataset; the remaining
programs were loaded only due to the absence of associ-
ated workloads. For programs in Linux-Bench, Katran, and
Filters, we employ the provided benchmark suites to as-
sess the overhead. In Linux-Bench, the benchmark program
loads the extensions, frequently triggers their execution, and
measures memory access throughput. For Filters, following
prior work [60,61,95], we load the filter programs and set up
a server and client that continuously transfer packets to trig-
ger these filters, subsequently measuring packet throughput.
Finally, we evaluate the throughput of the eBPF-based load
balancer using the driving workload provided by Katran’s
-perf_testing option in its benchmark suite [32]. This en-
sures AEE’s overhead is evaluated across varied workloads.

Linux-Progs (ns)
Linux-Bench (rops)
Katran (ns/pkt)
Filters (1pps)

174.1 (1.2%) | 173.6 (0.2%) | 173.6 (0.2%) | 173.7 (0.5%)
1126 (1.1%) | 1136 (0.3%) | 1127 (0.9%) | 1133 (0.5%)
130.2 (1.1%) | 129.1 (0.2%) | 130.0 (1.0%) -
99.0 (1.2%) - 99.5(0.7%) | 100.0 (0.3%)

Table 5: Impact on verification time. Max shows both the per-
centage and the absolute time increase. While the maximum
percentage increase is high, the absolute time remains low.

‘ All ‘ Offset ‘ Tag ‘ Size
Min | 0.5% 0.5% 0.1% 0.1%
Max (us) | 85.0% (106/125) | 80.7% (253/314) | 30.2% (72/240) | 84.0% (182/217)
Impacted Avg | 21.3% 6.5% 0.8% 15.6%
Overall Avg | 4.8% 1.5% 0.2% 3.6%

Table 4 illustrates the impact of AEE on program execu-
tion time. Overall, AEE incurs an average increase of 1.2%
across all benchmarks when all enforcement types are enabled,
with a maximum observed increase of 4.5%. For instance, in
the Linux-Progs benchmark, the overall average increase
is 1.2%, while individual enforcement types contribute even
less, with the offset and tag enforcement adding 0.2% each.
These results are consistent with the increase in binary size
and can be attributed to two primary factors: (1) eBPF pro-
grams are restricted to simple bounded loops [1], low branch
complexity [5], and a constrained total instruction count [4],
ensuring that the inserted instructions reside in trivial paths
that terminate quickly; and (2) the additional CPU cycles
required for the inserted instructions are minimal, with the
worst-case pac ()/aut () operations necessitating only 5—7
additional cycles [65,96]. The consistently low overhead un-
derscores AEE’s efficiency in enhancing safety guarantees
without compromising performance.

Verification Time. Table 5 presents AEE’s impact on the ver-
ification time. The average increase for all the impacted pro-
grams is 21.3%, while the overall average increase across all
programs is 4.8%. Although the maximum observed increase
reaches 85.0%, this does not significantly impact AEE’s scala-
bility for two major reasons: (1) the absolute increase remains
minimal, at the microsecond level, and (2) program loading
is infrequent, with verification being a one-time operation.
Therefore, AEE maintains efficient scalability.

7 Discussion

7.1 Pointer Authentication

We implement the tag enforcement using signature-based tech-
niques to inline tags, and pointer authentication seamlessly
integrates into our prototype. Key security considerations are



as follows. First, an attacker might attempt to brute-force
the pointer authentication code (PAC) or the associated key.
However, the likelihood of guessing the correct code is low
due to the large space [65], and each failed attempt triggers
an observable abnormal termination. Second, if an attacker
gains control over pointers or the modifier used for signing,
they could theoretically generate a malicious PAC. Under our
threat model, however, these events are precluded because
only kernel pointers are signed, and the modifier is securely
provided by the verifier. Third, reusing a signed pointer may
appear; yet, since the reused pointer carries the same tag,
subsequent accesses remain safe.

On other platforms, similarly efficient methods can be used.
For instance, one could maintain a secret salt in the kernel
and compute a hash from the pointer and the verifier’s tracked
value. This hash could then be stored in the higher-order bits
of the pointer, leveraging the upper-bit ignore feature common
to many architectures. In addition, because pointer spilling
and filling occur infrequently (0.7%, as shown in Table 3), the
performance impact remains consistent.

7.2 Generality

We illustrate AEE’s generality through additional vulnerabili-
ties and discuss its potential for other guarantees in eBPF.

CVE-2021-4001. This vulnerability arises from a data race
between the verifier and the map runtime utility, resulting in
a Time-of-Check to Time-of-Use (TOCTOU) condition [13].
eBPF programs can access maps shared with user space, and
when these maps are mutable, the verifier makes no assump-
tions about their contents, thus marking the target register as
an unbounded integer. However, when a map is made read-
only through the irreversible map_freeze () (and other rele-
vant flags [7]), as depicted in Figure 12, the verifier retrieves
the value stored in it and marks the register as this constant,
facilitating subsequent analysis. The data race permits con-
current modification of ostensibly frozen maps, invalidating
this assumption (r1 can take on arbitrary values at runtime)
and enabling attackers to compromise kernel memory.

TOCTOU exploits fundamentally rely on state inconsis-
tency, a vulnerability that AEE can mitigate by enforcing strict
adherence to verifier approximations. In this case, the verifier
concludes that the register holds a constant. When attackers
exploit the race condition to alter the value, AEE detects the
deviation and aborts execution. As illustrated in the lower
section of Figure 12: (1) If the value is used as a pointer offset
in direct memory access, offset enforcement captures incon-
sistencies during pointer arithmetic; (2) If it is used as a size
parameter in helper calls for indirect access, size enforcement
intervenes accordingly; and (3) alternatively, AEE can be pre-
emptively adapted to enforce immutability by substituting
map loads with constant moves during transformation.

In practice, eBPF ensures memory safety, termination, and
no information leakage. For termination, the verifier provides

; Check time vs. Runtime
map_val = lookup(..) ; map_freeze() vs. map_update()

rl = map_val[@] ;rl =0 vs. rl = any value
assert rl == assert rl == ri—=map—valfel
ptr += ril load(.., r1) rl =

Figure 12: CVE-2021-4001 and AEE’s enforcement for it.

r@ = lookup(..)
rl = *(u64*)(fp-off)

; r@ = ptr(size=16)
; unsound approximation of ril
; rl=0vs. rl =4

assert rl == 0 ; abort

r2 = *(ue4*)(r@ + rl) ; safe access with rl=4
r@ = lookup(..) ; r@ = ptr(size=16)

rl = *(ued4*)(fp-off) ; rl =32 vs. rl =32

r2 = *(ue4*)(r@ + rl) ; unsound safety check

)
b
assert rl == 32 ; permit
’
; unsafe access not rejected

Figure 13: Illustrative examples for AEE’s execution effects.

safe loop bounds, and AEE can enforce them via dynamic
loop counters. For information leakage, AEE enforces value
tags, and the verifier ensures addresses are not written to user-
accessible regions. Broadly, one may adapt the operational
semantics, identify relevant operations and approximations,
and rewrite extensions to enforce additional properties.

7.3 Execution Effects

AEE may terminate safe programs due to unsound approx-
imations (#2 in Figure 10). The upper section of Figure 13
illustrates this case: (1) the program accesses a region safely
using a valid offset, (2) the offset is incorrectly tracked, (3) the
safe program is accepted by the unsound approximation, and
AEE enforces it. At runtime, AEE detects this discrepancy and
halts the execution. While seemingly erroneous, such termina-
tion effectively exposes latent verifier flaws that could lead to
vulnerabilities. Without AEE, such defects remain unnoticed.
In practice, extensions are tested against offline workloads
before deployment. Early AEE terminations uncover verifier
weaknesses promptly before impacting production systems.

Conversely, AEE might permit unsafe programs when the
approximation (V.a) is sound, but the associated safety check
(V.s) is flawed (#3 in Figure 10). The lower section of Fig-
ure 13 shows a scenario where the verifier correctly tracks the
range of r1, and the runtime value aligns with the statically
checked one: the execution with r1=32 is permitted. However,
if an unsound safety check erroneously deems the final out-
of-bounds access as safe, this violation goes undetected: AEE
enforces V.a and presumes V.s to be correct. Nonetheless,
such cases are rare. The approximation logic V.a involves
complex abstract interpretation over instruction semantics
and diverse abstract domains, making it more susceptible to
errors. In contrast, safety checks V.s are much simpler, involv-
ing direct validations over computed approximations, which
renders them easier to implement and audit.



Table 6: Comparison of AEE with the existing work. Compat-
ibility legend: v" = no infrastructure changes, /A = requires
runtime support only, X = requires substantial modifications.

Mechanism Granularity  Kernel object access Compatibility

SandBPF [66]  Software Isolation Page Mirror copy X
MOAT [67] Intel MPK Page Dynamic remap X
HIVE [99] AArch64 LSU Page Dynamic patching X
BeeBox [61] Sandboxed space Page Selective copy X
KFLEX [49] Address masking Page/Object  Native A
AEE Approximation enforcement ~ Object Native v

8 Related Work

eBPF Hardening. Previous work has explored mechanisms to
enhance the security of eBPF extensions [54]. SandBPF [66]
confines memory accesses to specific pages allocated for ex-
tensions. MOAT [67] utilizes Intel Memory Protection Keys
(MPK) [29], while HIVE [99] uses AArch64 unprivileged
load/store (LSU) instructions to restrict accesses to sanctioned
memory areas. BeeBox [61] tackles transient execution at-
tacks by rerouting memory accesses into an isolated sandbox.
KFLEX [49] adopts address masking for extension-owned
memory while relying on the verifier for other properties.
Whereas existing work mainly isolates extensions, AEE
maintains extensions and the kernel in the same domain by
providing a hybrid safety guarantee. AEE relies on the safety
checks and its enforcement logic (Section 7.3), while existing
work mainly depends on the isolation logic. Technically, AEE
exhibits various benefits, as detailed in Table 6. Unlike the
page-level protections, AEE operates at the object level. AEE
maintains compatibility, whereas MOAT and HIVE require
significant alterations, including restructuring the map layout.
Isolation requires dynamically copying kernel objects into
extension-accessible regions, which AEE completely avoids.
General SFI. Software fault isolation techniques are adopted
to achieve various guarantees [44,55, 68, 70,73, 80, 87,93],
such as AddressSanitizer (ASan) [81] and its variant KASan.
Generally, SFI-based systems share a common structure: (1)
they define an isolated domain (e.g., ASan’s shadow mem-
ory), (2) maintain metadata (e.g., asan_poison ()), and (3)
perform runtime checks (e.g., asan_load/store ()) against
the metadata. AEE decouples these steps across stages: (1)
the verifier statically gathers approximations; (2) enforcement
ensures adherence to them; and (3) safety is assured through
trusted, static checks rather than extensive runtime checks.
AEE delivers fine-grained protection. ASan’s shadow mem-
ory lacks the originally associated region of each pointer: if
an out-of-bounds access strays into a different region, ASan
fails to detect the violation. AEE enforces approximations at
the object level and reliably detects such cross-region viola-
tions. Second, when an extension invokes helper functions
that cross the extension-kernel boundaries, full kernel instru-
mentation is required by KASan. AEE avoids this overhead
by confining enforcement solely within the extension, leaving
the kernel unmodified. Finally, leveraging the precomputed
approximations and trusted static checks, AEE requires fewer

r@ = lookup(..)
asan_poison(r@, ..
ro += off
asan_load(ro, ..)

rl = *(ue4*)(ro + 8)
asan_store(ro, ..)
*(ue4*)ro = 0

assert off == checked_off
rg += off

; statically checked by Vs
rl = *(ue4*)(ro + 8)

; statically checked by Vs
*(ue4*)ro = 0

Figure 14: ASan requires three runtime checks for this ex-
tension, while AEE needs one enforcement, and two trusted
checks that statically ensure the safety of the checked offset.

runtime checks as illustrated in Figure 14.

Safe Languages. Several studies have explored designing
safe kernel-extension languages [39, 79]. Jia et al. [58], for
example, advocate writing kernel extensions in Rust, using
a trusted userspace toolchain. SafeDrive [101] incorporates
predefined annotations that enable the compiler to generate
inline runtime checks, and SPIN [40] enforces explicit inter-
face boundaries through compiler-level mechanisms. These
approaches introduce an additional trust component in the
compiler. In comparison, AEE ensures the compatibility while
maintaining a reduced trust base.

Extension Verification. Necula introduced proof-carrying
code (PCC) [74], wherein extensions are accompanied by
proofs, which are validated by a proof checker before ex-
ecution. Nelson et al. [76] extended PCC to eBPF, while
XFI [50] implemented a similar approach for Windows bi-
naries. However, generating safety proofs is inherently chal-
lenging, and existing prototypes often struggle to provide
comprehensive guarantees with acceptable proof sizes. eBPF
adopts the verifier as a gatekeeper; following this approach,
Gershuni et al. [51] proposed a verifier based on the abstract
interpretation framework. AEE builds upon the verifier but
combines its safety checks with approximation enforcement.
Verifier Soundness. Substantial efforts have been devoted
to improving the verifier’s soundness through formal veri-
fication [75,90-92,94,97] and dynamic testing [56,72, 78,
82, 85, 86, 88, 98]. Formal verification ensures the consis-
tency between the implementation and its specification, while
testing relies on well-crafted oracles to uncover errors. AEE
complements the existing solutions by providing an effective
mitigation strategy for unsound approximations, ensuring safe
execution even in the presence of verifier flaws.

9 Conclusion

In this paper, we have proposed Approximation-Enforced
Execution, a novel concept to achieve the safe execution of
untrusted kernel extensions. Rather than using the verifier as a
gatekeeper, AEE provides safety guarantees by only trusting
its safety checks and enforcing strict adherence to the checked
approximations. Our evaluation has demonstrated AEE’s ef-
fectiveness by achieving improved safety guarantees with a
drastically reduced trust base while incurring low overhead.
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