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Abstract

Modern OS kernels, such as Linux, employ the eBPF subsys-

tem to enable user space to extend kernel functionality. To

ensure safety, an in-kernel verifier statically analyzes these

extensions; however, its imprecise analysis frequently re-

sults in the erroneous rejection of safe extensions, exposing

a critical tension between the precision and computational

complexity of the verifier that limits kernel extensibility.

We propose a proof-guided abstraction refinement tech-

nique that significantly enhances the verifier’s precision

while preserving low kernel space complexity. Rather than

incorporating sophisticated analysis (e.g., via new abstract

domains) directly into the verifier, our key insight is to decou-

ple the complex reasoning to user space while bridging the

gap through formal proofs. Upon encountering uncertain-

ties, the verifier initiates an abstraction refinement procedure

rather than rejecting the extension. As the refinement in-

volves nontrivial reasoning, the verifier simply delineates

the task and delegates it to user space. A formal proof is

produced externally, which the verifier subsequently checks

in linear time before adopting the refined abstraction. Conse-

quently, our approach achieves high precision via user space

reasoning while confining kernel space operations to an effi-

cient proof check. Evaluation results show that our technique

enables the verifier to accept 403 out of 512 real-world eBPF

programs that were previously rejected erroneously, paving

the way for more reliable and flexible kernel extensions.

1 Introduction

OS kernels are designed for high extensibility to accommo-

date diverse user space workloads [19, 41, 65]. A prominent

example is the eBPF subsystem in Linux [81], which permits

user space to inject specialized functionality into the kernel

via extensions [86, 93, 96, 99, 101]. These extensions support

various tasks, including performance profiling [1, 2], security

monitoring [13, 54, 57], file system management [22, 94, 97],

and device driver enhancements [60, 85]. For instance, eBPF

has been exploited to implement tailored process scheduling
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strategies, achieving significant performance improvements

and enhanced CPU utilization [50]. Furthermore, eBPF has

seen widespread industrial adoption; Meta deploys over a

hundred eBPF extensions in its production servers [35], while

companies such as Google and Cloudflare rely extensively

on eBPF in their operational environments [43].

Since eBPF extensions are executed in kernel space but

are developed by untrusted third parties, the kernel must rig-

orously ensure their safe execution without relying on trust

assumptions. This safety is guaranteed by an in-kernel static
analyzer, commonly referred to as the verifier [80], which

leverages abstract interpretation techniques [36]. The veri-

fier systematically explores all potential control-flow paths

and interprets each instruction via abstract semantics, veri-

fying critical properties such as memory safety and correct

kernel interactions. Any violation leads to static rejection.

By embedding the verifier directly within the kernel, this

approach provides robust, provable safety guarantees: the

system remains a stable core kernel augmented solely by stat-

ically verified extensions. Consequently, even if user space

is compromised or the code is malicious, the verifier effec-

tively prevents the execution of unsafe extensions, thereby

preserving kernel integrity and overall system stability.

Challenges. Although the eBPF verifier delivers robust

safety guarantees and high performance of extensions, de-

signing a precise in-kernel verifier entails significant chal-

lenges, particularly in balancing analysis precision against

system complexity. Enhancing precision typically requires

incorporating sophisticated static analysis techniques. For

instance, rather than relying solely on interval analysis, em-

ploying relational abstract domains such as Octagon [68] and

Polyhedra [38] could capture richer variable relationships,

thereby increasing accuracy. However, the kernel environ-

ment imposes stringent constraints on verifier complexity

and runtime overhead—constraints that differ markedly from

those in user space. Increasing verifier complexity not only

enlarges the potential attack surface, thereby introducing

security vulnerabilities, but also leads to runtime overhead,

which adversely affects system latency and consumes ker-

nel resources, ultimately degrading user space application

performance. Given their complexities—e.g., 𝑂 (𝑛3) for Oc-
tagon and𝑂 (2𝑛) for Polyhedra—these advanced analyses are
generally impractical within kernel constraints.

In practice, the eBPF verifier sacrifices analysis precision

to ensure low computational complexity. To facilitate ef-

ficient analysis, the verifier employs inexpensive abstract
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domains, notably the interval domain [37], which tracks

variable ranges, and the tristate domain [87], which captures

per-bit value information. Both domains support linear-time

analysis and reasoning. However, these abstractions intrin-

sically over-approximate during each interpretation step,

discarding precise information about concrete computations

(as detailed in section 2). As a result, the abstraction of the

program state rapidly becomes coarse-grained, leading to the

incorrect rejection of many safe extensions [5, 10, 75]. This

outcome poses significant challenges for extension develop-

ers: addressing verifier feedback often requires substantial

manual effort due to the considerable gap between high-level

source code and the verifier’s bytecode-level error messages.

In numerous cases, resolving these false positives demands

extensive code refactoring; in some instances, mitigation is

infeasible, thereby limiting kernel extensibility [12, 74, 78].

Existing Efforts. Prior research has primarily focused on

enhancing the verifier’s existing analysis or incorporating

new abstract domains. For instance, Vishwanathan et al. [87]
improved the precision of operators within the verifier’s tris-

tate domain by formally establishing the optimality of its

addition and subtraction operator analysis and by propos-

ing a more precise approach for multiplication. Nonetheless,

these enhancements do not overcome the fundamental limi-

tations inherent to the tristate domain (section 2). Tomitigate

these constraints, PREVAIL [48] adopted the Zone abstract

domain [67], which offers improved precision over interval

and tristate. However, the integration of advanced analysis

invariably introduces a precision-complexity trade-off. Al-

though the Zone domain improves precision for certain byte-

code patterns, it concurrently increases both the verifier’s

complexity and its runtime overhead, potentially conflicting

with kernel constraints (section 8 details related work).

In this paper, our vision is to enhance the in-kernel verifier

to achieve a precision comparable to symbolic execution [61]

while maintaining linear-time complexity in kernel space,

thereby advancing the adoption of safe kernel extensions.

Key Insight. Rather than incorporating increasingly sophis-

ticated techniques directly within the verifier—as has been

typical in prior work, we aim to decouple complex reason-

ing from the in-kernel verifier and delegate it to user space.

Our key insight is to preserve the verifier’s simplicity and

efficiency while enhancing its precision through on-demand

abstraction refinement performed in user space. The kernel is

solely for validating the refinement via efficient, linear-time

proof checking that eliminates any hidden trust.

More concretely, our first design principle is to keep the

verifier simple, maximizing its use for analysis while main-

taining its efficiency. When the verifier is unable to proceed,

this indicates one of two possibilities: either the program

is unsafe, or the program is safe but the abstraction is too

imprecise—where the latter is the predominant source of

false rejections, i.e., rejections due to the infeasible states in

Imprecise Abstraction

Refined 
Abstraction

Program State

User Space

Kernel Space

Refinement 
Task

Reasoning 
Tools Proof

Proof 
Checker

Figure 1. Our approach enhances verifier precision through

on-demand refinement. This refinement is delegated to user

space, where complex reasoning is performed, and is subse-

quently adopted after an efficient proof check.

the imprecise abstraction as shown in Figure 1. In contrast

to existing designs, we interpret this scenario as a signal for

abstraction refinement rather than rejection of the exten-

sion. Refinement involves analyzing the program state to

derive a more precise abstraction, a process that may require

complex techniques. By our key insight, the verifier merely

delineates the refinement task, while the computationally

intensive reasoning is offloaded to user space. Finally, since

the kernel never trusts user space, we require a machine-

checkable proof that certifies the validity of the refinement,

which is adopted only after proof checking.

Our Approach. Based on our design principles, we propose

a proof-guided abstraction refinement technique and apply

it to enhance the eBPF verifier, referred to as BCF (eBPF

Certificate Framework). Initially, the verifier performs its

efficient abstract interpretation as before; however, when a

potential error is detected, the refinement starts by symboli-

cally following the current analysis path to capture an exact

representation of the program state. The verifier then de-

rives a refined abstraction that allows the analysis to proceed,

and the soundness of the refinement is captured as a formal

condition using the symbolic information. The condition is

delegated to user space, where SMT solvers are employed to

generate proof attesting to the condition’s validity. Crucially,

while generating the proof in user space is hard, validating

the proof in kernel space is straightforward and can be per-

formed in linear time. In this manner, our approach achieves

high precision via user space reasoning while imposing low

overhead and complexity in kernel space.

To comprehensively evaluate our approach in terms of

precision improvement and overhead, we collected a dataset

of 512 real-world eBPF programs that are safe yet incorrectly

rejected. These programs were compiled with different com-

piler configurations (detailed in subsection 6.1) from popular

projects that extensively use eBPF, including Cilium [28] and

Calico [25], etc. [20, 52, 90]. Our evaluation shows that the

state-of-the-art verifier, even with recent improvements, fails

to accept these programs; in contrast, with BCF, the verifier

accepts 403 (78.7%) of these programs, with an average proof
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size of 541 bytes and a proof checking time of 48.5 microsec-

onds. Overall, the overhead introduced in kernel space is

minimal, and our tool supports fully automated, push-button

analysis. Our key contributions are as follows:

• Novel Approach.We introduce proof-guided abstrac-

tion refinement that enhances the in-kernel verifier by

refinement offloading and efficient proof checking.

• Dataset. We curate and publicly release a rich dataset

of real-world eBPF programs [83], serving as a valuable

resource for future research.

• Implementation. We implement and open source

BCF [82], and our results show its significant improve-

ment on the verifier’s precision and low overhead in

kernel space.

2 Background

Because extensions originate from user space, they present

potential risks to kernel stability and integrity, whether due

to malicious intent or inadvertent programming errors. Con-

sequently, the kernel employs an in-kernel verifier to ensure

that the extension (1) only accesses permitted regions (mem-

ory safety); (2) terminates within a predefined execution

bound; and (3) interacts with the kernel only through valid,

approved mechanisms (e.g., limited kernel functions [4]).

Abstraction. To achieve these safety guarantees while bal-

ancing precision and complexity, the eBPF verifier leverages

abstract interpretation techniques. In particular, it utilizes ef-

ficient abstract domains to approximate the potential values

of each variable. In this paper, we refer to these approxima-

tions of program state, represented in various domains, as

abstractions. For instance, the verifier employs four distinct

interval domains that account for different bit sizes and sign

representations of each register, complemented by a tristate

domain to track the status of individual bits. Collectively,

these abstractions enable the derivation of variable ranges.

During analysis, the verifier updates the ranges of involved

registers locally for each computation. When a memory ac-

cess occurs, the accumulated range information is leveraged

to determine whether the access might exceed permitted

bounds. Unlike classic abstract interpretation, the eBPF ver-

ifier never merges analysis paths but follows each feasible

path and prunes equivalent states informed by the abstrac-

tion [23]. Moreover, since the interval and tristate domains

are maintained in linear time, the verifier is efficient and

concludes its analysis rapidly.

Listing 1 illustrates an analysis process performed by the

verifier. For clarity, only the range information is shown

rather than the complete interval and tristate domains. Ini-

tially, the verifier identifies that register r1 is a pointer to

a map value area of sixteen bytes. Subsequently, the range

of r2 is constrained by a bitwise AND operation (instruc-

tion #1) that clears all except the lower four bits. After the

subsequent shift operation (#2), the range of r2 is further

expanded. Finally, r2 is used as a pointer offset added to

r1 (#3) during a one-byte memory access attempt. As the

resulting pointer may exceed the memory bounds, e.g., when
r2 equals 16, the access is correctly rejected (#4).

0: r1 = map_lookup(...) // r1 = ptr(size=16)
1: r2 &= 0xf // r2 ∈ [0,15]
2: r2 <<= 1 // r2 ∈ [0,30]
3: r1 += r2 // r1.off ∈ [0,30]
4: r0 = *(u8*)r1 // unsafe: off+access_sz > mem_sz

Listing 1. Correct rejection of unsafe extension. The

comments illustrate the verifier’s analysis.

Imprecisions. Although the extension is correctly rejected,

this example already exposes inherent imprecision in the

analysis. At #1, zeroing the higher bits of r2 yields a precise

range of [0, 15]. However, following the left shift at #2, the
range is updated to [0, 30]. Notably, the last bit of r2 after

the shift must remain zero, indicating that nearly half of the

values in the approximated range are infeasible (imprecise

abstraction as in Figure 1). In general, while the interval and

tristate domains provide computational efficiency, they suf-

fer from fundamental precision limitations: (1) significant

information is lost when processing arithmetic operations

in the tristate domain or logical operations in the interval

domain; (2) the precise computation is not preserved, as it

is replaced by a locally updated over-approximation that

rapidly propagates imprecision; and (3) complex compu-

tations and inter-variable relationships are inadequately

tracked. Consequently, these imprecisions cause the verifier

to reject many safe extensions erroneously.

Listing 2 presents an incorrect rejection of safe extension.

Both r1 and r2 initially store the same input value (#0 and

#1), which can be either zero or one (denoted as 0b000x). Reg-
ister r2 is subsequently left-shifted by one bit (#2), yielding

0b00x0, and then compared with the constant 0b0001. In the
non-taken branch from #3 to #4 (fallthrough), the unknown

bit of r2 must be zero (ensuring its value is less than one),

and consequently, r1 must be zero. However, the verifier is

incapable of performing such reasoning or tracking variable

relationships (#3), resulting in propagated imprecision (#4)

and, ultimately, a false rejection (#5).

0: r1 &= 1 // r1=0b000x (x indicates unknown)
1: r2 = r1 // r2=0b000x
2: r2 <<= 1 // r2=0b00x0
3: if r2 > 1 goto exit // fallthrough, r2<=0b01 (hence x=0)
4: r1 *= 8 // r1 ∈ [0,8] (yet, r1 must be 0)
5: load_bytes(...,r1) // unsafe (incorrect rejection)

Listing 2. Incorrect rejection of safe extension. The contents

within the parentheses are our annotations.

In practice, eBPF extensions are more complex than these

simplified examples, as they are deployed in various sce-

narios to implement rich functionalities. Thus, the verifier’s

inherent imprecision has emerged as a significant bottleneck.
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Instruction Abstraction Refinement
0: r1 = map_lookup(…) r1 = ptr(size=16) r2 = sym

1: r2 &= 0xf r2 ∈ [0,15] r2 = sym&0xf

3: r1 += r2 r1.off ∈ [0,15] r1.off = sym&0xf

4: r3 = 0xf - r2 r3 ∈ [0,15] r3 = 0xf - sym&0xf 

5: r1 += r3 r1.off ∈ [0,30] r1.off = (sym&0xf)
         + (0xf - sym&0xf)

6: r0 = *(u8*)r1 Unsafe, refine… Condition: r1.off + 1 <= 16

6: … r1.off ∈ [0,15] Proved and r1.off refined

r1.off ∈ [0,30] r1.off = sym&0xf + … 

r1.off + access_sz  mem_sz≤
(30+1  16)¬ ≤

Unsafe

r1.off + 1  16≤
User Space Reasoning

Proof

r1.off <= 15 holdsr1.off ∈ [0,15]

Refine

Abstraction Refinementvs.

Figure 2. Illustrative example of our BCF approach. When the verifier stalls at #6, the refinement is triggered, where the

pointer offset r1.off is represented precisely with a symbolic expression. By proving that the refinement condition holds, the

upper bound of r1.off can be safely tightened to fifteen, allowing the analysis to proceed.

3 Illustrative Example

This section presents an incorrect rejection, simplified from

multiple real-world reports [12, 75, 78]. We show how our

BCF approach enhances the verifier to accept it correctly.

Incorrect Rejection. Although the verifier is engineered

for efficiency, its reliance on local over-approximations at

each analysis step can rapidly propagate imprecision, ulti-

mately resulting in incorrect rejections. Figure 2 illustrates a

simplified instance of the extension presented in Listing 7. In

this example, registers r2 and r3 represent the sizes of two

contiguous memory accesses (with the memory access in-

struction omitted for clarity). The first access, determined by

r2, is boundedwithin the range [0, 15]. The second access, de-
termined by r3, covers the remaining bytes and satisfies the

relation r3 = 0xf-r2. Consequently, the total size accessed,
r2+r3, is exactly fifteen bytes. However, the verifier’s local

analysis fails to preserve the fact that r3 is confined to the

remaining portion of memory, instead over-approximating

its range to r3 ∈ [0, 15]. As a result, the pointer offset update
(r1 += (r2+r3)) is over-approximated to [0, 30]—twice the
actual range—leading to an erroneous rejection.

1 // 256 KiB per cpu core, of which 128 KiB is usable as
2 // we have to bound each new variable-length field to
3 // start at no more than half the size of the buffer to
4 // make the verifier happy.
5 #define EVENT_BUFFER_SIZE (1 << 18)
6 #define EVENT_BUFFER_SIZE_HALF (EVENT_BUFFER_SIZE >> 1)

Listing 3.Workaround to mitigate the verifier’s imprecision.

This imprecision has adversely affected multiple user space

projects that rely on eBPF, such as Tetragon [12] (a security

enforcement framework) and SCX [78] (eBPF-based sched-

ulers). As a consequence, developers are compelled to code

refactoring. A commonworkaround is to double the allocated

memory size; for example, in the instance above, 32 bytes

must be allocated for r1. Similarly, in the Elastic project [45],

developers are forced to allocate 256 KiB of memory per CPU

core even though only 128 KiB is usable (Listing 3), resulting

in significant kernel resource wastage.

In practice, the intrinsic limitation of the verifier’s analysis

has led to various false rejections, and workarounds—e.g.,
adding unnecessary checks and even writing inline assem-

bly—are required to mitigate the imprecision. In many cases,

devising a workaround to correct the imprecision is highly

nontrivial, if not infeasible.

OurApproach.BCF enhances the verifierwith proof-guided

abstraction refinement, i.e., deriving a more precise abstrac-

tion on demand and using the proof to validate its soundness.

Our approach strategically combines analysis techniques at

different precision levels, bridging the gap between coarse

abstractions and precise reasoning through formal proofs.

Step 1: Refinement Condition Generation. When the

verifier stalls at instruction #6 in Figure 2, a refinement is

triggered to narrow the range of the pointer offset of r1.
The verifier’s coarse abstraction over-approximates register

values, necessitating a more precise representation. BCF thus

tracks the program state with symbolic expressions, yielding
an exact representation without information loss.

Initially, r2 is associated with a symbolic variable, sym,
which represents its entire set of possible values. Every sub-

sequent computation is recorded precisely as an expression

over these symbolic variables. For instance, the computa-

tion for r3—which corresponds to the remaining portion

of the fifteen-byte memory access—is captured exactly as

0xf-(sym&0xf), and the pointer offset is expressed as the

sum of the symbolic expressions for r2 and r3. At instruc-
tion #6, BCF has derived the most accurate representation

of r1.off, given by (sym&0xf) + (0xf-(sym&0xf)). This
symbolic expression precisely encapsulates all possible val-

ues of r1.off: for every assignment to sym, the expression
consistently evaluates to 0xf, in contrast to the verifier’s orig-
inal imprecise interval [0, 30]. Notably, since this procedure
merely records the computation, it is inherently efficient.

To allow the verifier to continue its analysis, the safety

check at #6 must be satisfied: the one-byte memory access,

when combined with r1’s offset, must lie within the allocated

memory, i.e., r1.off+1 ≤ 16. Therefore, the range of r1.off
must be refined from [0, 30] to [0, 15]. The critical task then

739



Step Rule Premise Conclusion

s0 assume - off = (sym&0xf) + 0xf - (sym&0xf)
s1 assume - off > 15
s2 sub_elim - (sym&0xf) + 0xf - (sym&0xf) = 15
s3 trans s0,s2 off = 15
s4 cong s3 (off > 15) = (15 > 15) 
s5 eval_bool - (15 > 15) = false
s6 trans s4,s5 (off > 15) = false
s7 false_elim s6 ¬(off > 15)
s8 contra s1,s7 FALSE

a + b − a = b
sub_elim

t1 = t2, …, tn−1 = tn
t1 = tn

trans
t1 = s1, …, tn = sn

f(t1, …, tn) = f(s1, …, sn) cong

F = false
¬F

false_elim
F, ¬F
false

contra

Rules:

Figure 3. The proof submitted from user space, establishing

the validity of the refinement condition. The lower section

formally defines the rules applied.

is to verify the soundness of this refinement—that is, to
ensure that every possible value of r1.off falls within this

refined range. Given that all possible values of r1.off are
accurately captured by the above symbolic expression, this

requirement is formally expressed as

(sym&0xf) + (0xf-(sym&0xf)) ≤ 15,

i.e., for all possible assignments to sym, the condition must

hold. If the condition is met, the verifier confirms the sound-

ness of the refinement; otherwise, the analysis is terminated.

We refer to this key predicate as the refinement condition.
Step 2: User Space Proof Generation. Reasoning the re-

finement condition is considerably more challenging than

performing a simple bound check within the interval domain.

Specifically, the verifier must demonstrate that the condi-

tion holds for every possible assignment to the symbolic

variables. Although the condition in the previous example

is relatively straightforward, more complex programs yield

nontrivial conditions, reasoning which is essentially equiva-

lent to solving satisfiability problems—a task known to be

NP-complete [34] and typically addressed using sophisticated
search algorithms. However, while finding a solution for such

problems is computationally intensive, validating a given

solution can be accomplished efficiently, often in linear time.
If an assignment that violates the condition is found, it can be

directly verified; otherwise, a formal proof that the condition

holds can be generated and checked.

To manage this complexity, BCF partitions the workload

into two components: (1) reasoning about the refinement con-

dition, which is computationally intensive and is therefore

delegated to user space, and (2) validating the resulting proof,

which is performedwithin the kernel. After deriving the sym-

bolic expression for r1.off, BCF encodes the refinement

condition and transmits it to user space, where SMT solvers

are employed to reason about the condition. Ultimately, a

formal proof confirming the condition—illustrated in Fig-

ure 3—is generated by the solver.

Step 3: Kernel Space Proof Check. Given the kernel’s

inherent distrust of inputs from user space, a rigorous proof

check is performed upon receiving the proof. A proof is a

sequential application of well-defined proof rules, each of

which soundly transforms its premises into a conclusion. The

proof checker performs a linear scan of the proof, verifying

at each step that both premises and conclusions conform

to the prescribed rules. For instance, the false_elim rule

requires exactly one premise of the form F = false and

concludes ¬F; any deviation from it is rejected.

As illustrated in Figure 3, the user space proof for the re-

finement condition comprises nine key steps and adheres to

a proof-by-contradiction structure. Each step is formatted as

a triple (rule, premises, conclusion). Initially, two assume
rules (s0 and s1) assert the negation of the refinement con-

dition. Next, the sub_elim rule in s2—which reflects the

arithmetic property 𝑎+𝑏−𝑎 = 𝑏—eliminates a redundant sub-

traction. By transitivity, s3 deduces off=15 from s0 and s2.
Subsequently, the cong rule applies identical operations to
both sides of an equality; for example, asserting bigger than

fifteen to both sides of off=15 yields (off>15)=(15>15)
(s4). Finally, using the eval_bool, trans, and false_elim
rules, the proof deduces ¬(off>15) at s7, which directly

contradicts an earlier conclusion (as noted in s8). This con-
tradiction invalidates the initial assumptions (s0 and s1),
thereby establishing that the refinement condition holds.

Since each proof rule represents a sound, simple trans-

formation, and the proof is a sequence of such rules, proof

checking is efficiently performed in linear time. Upon suc-

cessful validation, the in-kernel verifier is assured that the
refinement is sound, obviating any hidden trust, and the

analysis can safely continue using the refined abstraction.

Consequently, BCF applies refinement on demand, enabling

the verifier to achieve high precision via user space reasoning

while confining computational complexity to the efficient

kernel space proof check.

4 Approach

Figure 4 illustrates the workflow of our approach. Initially,

the verifier executes its efficient abstract interpretation. Upon

encountering an error, the refinement procedure is triggered.

A backward analysis is first employed to determine the appro-

priate program location for initiating symbolic tracking, and

the symbolic expressions for the relevant registers are then

collected. The abstraction is refined, and a corresponding

refinement condition is produced to certify the soundness of

the refinement. This condition is subsequently transmitted

to user space, where the necessary—albeit potentially expen-

sive—reasoning is performed. Once the proof is submitted,

the kernel rigorously validates it by applying each proof rule;
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Figure 4. Workflow of proof-guided abstraction refinement.

any invalid step results in termination. Finally, the verifier

resumes its efficient analysis with the refined abstraction.

Backward Analysis. When the verifier cannot proceed,

we need to identify the segment of the analysis path that

requires symbolic tracking. Rather than analyzing the entire,

potentially extensive, eBPF program, we focus on a suffix of

the current path that captures the value definitions of the

target register along with all registers onwhich it transitively

depends. We say that a register 𝑟𝑖 depends on another register
𝑟 𝑗 if an operation of the form 𝑟𝑖 op = 𝑟 𝑗 (e.g., 𝑟𝑖 += 𝑟 𝑗 ) occurs
before 𝑟𝑖 is defined. A register is defined after a value is

directly stored in it. Through backward analysis, we pinpoint

the earliest instruction in the path where the target register

and its dependent registers are defined, thereby enabling the

collection of accurate symbolic information.

1 ... // instructions before are irrelevant
2 // (analysis ends, the suffix found)
3 r1 = map_lookup(...) // {} (r1 defined)
4 r2 = load_ctx(...) // {r1} (r2 defined)
5 r2 &= 0xf // {r1, r2}
6 r1 += r2 // {r1, r2}
7 r3 = 0xf - r2 // {r1, r2} (r3 defined, r2 added)
8 r1 += r3 // {r1, r3} (r3 added to the set)
9 r0 = *(u8*)r1 // {r1} (backward analysis starts)

Listing 4. Backward analysis to pinpoint the start location.

As illustrated in Listing 4, the backward analysis maintains

a set of registers while traversing the program path in reverse

order (e.g., from line 9 to line 3 in the example) to identify

where each register in the set is defined. This set is initialized

with the target register (r1). As the analysis proceeds, any
register upon which a tracked register depends (for instance,

r3 at line 8) is added to the set; conversely, a register is

removed once its definition is found (as with r3 at line 7).

The analysis terminates when the set becomes empty, at

which point the starting location for symbolic tracking is

determined. The analysis must terminate because the verifier

enforces the initialization of the register before its usage.

Furthermore, this targeted approach exploits the inherent

locality of programs by examining only those instructions

directly related to the target registers, ensuring that the

subsequent symbolic tracking is both precise and efficient.

Symbolic Tracking. This phase initiates at the program

location identified by the backward analysis and computes

the symbolic expressions for the target registers. For each

operation within the suffix, two primary actions are per-

formed—actions analogous to those in classical symbolic

execution. First, the computation is captured by updating

the expressions associated with the involved registers:

{𝑟𝑖 = exp𝑖 , 𝑟 𝑗 = exp𝑗 } 𝑟𝑖 op = 𝑟 𝑗 {𝑟𝑖 = exp𝑖 op exp𝑗 },
where exp denotes a symbolic expression and op represents
an operation (e.g., addition). Second, the relevant path con-

straints are recorded. Unlike traditional symbolic execu-

tion—which forks at every conditional branch—our approach

focuses exclusively on the suffix that triggers the refinement,

therebymitigating the potential path explosion. Furthermore,

because the verifier has already processed the instructions

within this suffix, its partial approximations can be lever-

aged to optimize the symbolic tracking. Specifically, the bit

size of symbolic variables is reduced to 32 bits whenever the

verifier’s range information indicates that a register remains

within [u32_min, u32_max], thus avoiding unnecessary 64-

bit operations and simplifying the symbolic expressions. Ad-

ditionally, operations that involve solely constant values are

omitted, as their outcomes are already known.

Refining Abstraction. Upon completion of the symbolic

tracking phase, a refined abstraction is derived—a more pre-

cise abstraction necessary for the analysis to progress. Es-

sentially, the verifier’s abstraction is employed to perform

certain safety checks, which in turn delineate the “safe” ab-

straction. For example, when verifying memory accesses,

the verifier utilizes the range of the pointer offset ri .off to

ensure that

high(ri .off ) + access_sz ≤ mem_sz and low(ri .off ) ≥ 0,

where high(·) and low(·) denote the upper and lower bounds
of the offset, respectively. When the existing bound for ri .off
fails to satisfy these conditions (as illustrated in Figure 2,

where r1.off ∈ [0, 30] violates the requirement), the analysis

cannot continue. We thus rephrase the constraint to

high(ri .off ) ≤ (mem_sz−access_sz) and low(ri .off ) ≥ 0,

which effectively prescribes the refined abstraction to allow

the analysis to proceed: [0,mem_sz−access_sz]. For instance,
if mem_sz = 16 and access_sz = 1, the refined offset range

becomes [0, 15] as illustrated in Figure 2.

Refinement Condition. To ensure the refined abstraction

is sound, a crucial condition must be satisfied: every possible

runtime value of the target register must lie within the re-

fined range. Since these values are encapsulated by the sym-

bolic expression (denoted as 1○ in Figure 5), the condition can

be formally reformulated to require that the symbolic expres-

sion is entirely contained within the refined abstraction ( 2○).
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Figure 5. A refined abstraction is sound only if it contains

all possible program states. The refinement condition asserts

this containment and requires a user space proof.

This containment, in conjunction with the corresponding

path constraint, is encoded as the refinement condition that is
transmitted to user space as a proof obligation ( 3○). For exam-

ple, in Figure 2, the expression (sym&0xf)+(0xf-sym&0xf)
represents all possible values for r1’s offset, and the refined

abstraction is sound only if this expression is fully contained

within the refined interval [0, 15].
Reasoning the refinement condition leads to two possible

outcomes. First, if the condition fails—i.e., there exists an
assignment to the symbolic variables such that the condition

evaluates to false—it indicates that the refined abstraction

does not encompass all possible values. Consequently, the

refinement is unsound, and the analysis terminates. Second,

if the condition holds, a proof can be produced and subse-

quently validated by the checker, establishing the soundness

of the refinement without trust.

Workload Delegation. Reasoning the refinement condi-

tion requires sophisticated techniques (section 3), and we

delegate it to the user space. A range of well-established

tools—such as SMT solvers and theorem provers—can be em-

ployed in user space. This delegation is supported by both

theoretical and practical considerations. Theoretically, since

eBPF registers are fixed-size machine words (e.g., 64 bits),

the generated conditions involve only a finite set of bounded

symbolic variables; hence, the satisfiability problem under

this constraint is fundamentally decidable [18] (e.g., via enu-
merating the bounded space), ensuring that a proof must ex-

ist when the condition holds. Practically, modern solvers are

optimized with advanced algorithms and heuristics, allowing

them to efficiently solve such bounded problems. Indeed, our

experiments show that the chosen solver can handle all the

conditions produced for the collected extensions.

Proof Check. A formal proof is required to justify the

user space’s conclusion regarding the refinement condition,

which must demonstrate that, for every possible assignment

to these variables, the condition holds.

The argument is organized as a proof tree, where each

node corresponds to a proof rule that precisely states its

premises and the derived conclusion, culminating in the

final result at the root node. The proof tree is converted to a

topologically ordered list of the nodes when submitting from

s7: false_elim

s8: contra

s1: assume

s0: assume

s6: trans

s4: cong s5: eval_bool

s3: trans

s2: sub_elim

off=(sym&0xf)+0xf… (sym&0xf)+0xf…=15

off=15

(off>15)=(15>15)  (15>15)=false

(off>15)=false

(off>15)¬(off>15)

Figure 6. Proof tree of Figure 3, where each node represents

a rule, the children are its premises, and s8 is the root node.

user space. The checker then sequentially applies each rule

in the provided order, confirming that the premises at each

step align with the rule’s definition. Any discrepancy results

in the immediate rejection of the proof. Figure 6 illustrates

the proof tree corresponding to the example in Figure 3,

in which the assumption leads to a contradiction, thereby

establishing—via its negation—that the refinement condition

holds. Although generating such a proof is computationally

intensive, checking the produced proof is straightforward,

involving only a finite sequence of rule applications. This

clear workload separation between proof search (conducted

in user space) and proof check (performed in kernel space)

enables the in-kernel verifier to achieve high precision while

imposing low overhead and reducing the attack surface.

Our approach ensures that unsafe extensions cannot
bypass the verifier through forged proofs. First, the refine-

ment condition computed by BCF is stored within the verifier

before control returns to user space. The subsequently sub-

mitted proof is untrusted and must establish this condition,

which is verified by our in-kernel proof checker. Second,

for unsafe extensions, the refinement condition—asserting

that the symbolic state remains entirely within a safe ab-

straction—cannot hold. For example, if the program attempts

an out-of-bounds memory access, the symbolic state will

capture this violation, and the corresponding condition (e.g.,
in-bounds access) will fail. Because all rules and axioms in

the proof system preserve validity, no valid proof can derive

an invalid refinement condition for an unsafe extension. Any

forged proof must therefore either apply an invalid inference

rule or attempt to prove a true but inconsistent condition; in

both cases, the proof checker detects and rejects it.

5 Implementation

Overall. Our implementation encompasses modifications to

the eBPF verifier, integration of an in-kernel proof checker,
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shared interface definitions between user space and ker-

nel space (uapi), the loader [24], and the cvc5 solver [14],

amounting to a total of 7,366 lines of C/C++ code (Table 1).

Table 1. Overview of the code base of major components.

Component Language Lines of Code Location

Verifier C 1663 Kernel space

Proof Checker C 2337 Kernel space

uapi C 190 Shared

Loader C 349 User space

Solver C++ 1837 User space

BCF is fully automated and supports push-button analy-

sis: (1) the verifier executes until it generates a refinement

condition; (2) control is transferred to the loader program,

which translates the refinement condition into the solver’s

formula format and invokes the solver to produce a proof;

and (3) the loader submits the proof back to the verifier,

allowing the analysis to resume. This iterative process ter-

minates when either (1) the analysis completes successfully

and the extension is accepted, (2) the refinement condition

is violated—indicating that the extension is unsafe and must

be rejected—or (3) the one million instruction limit [6] is

reached, at which point the analysis is terminated.

System Call. Despite the rich functionality added, integrat-

ing BCF requires only five additional fields in the load com-

mand invoked via the bpf() system call, thereby obviating

the need for new system calls or commands (see Listing 5). A

shared buffer is employed to store both the refinement condi-

tion and the corresponding proof submitted from user space,

with two size fields delineating the buffer’s total capacity

and the utilized portion. Upon returning to user space, the

verifier’s state is preserved in an anonymous file referenced

by bcf_fd, which is used exclusively to resume the state.

Additionally, a flag distinguishes whether a proof is being

requested or provided, thereby tailoring the proof-checking

process. Consequently, user space can adopt BCF by simply

supplying the buffer, checking the flag, and resuming the

verifier via the file descriptor.

1 -1573,6 +1582,20 @@ union bpf_attr {
2 __s32 prog_token_fd;
3 + __u32 bcf_fd;
4 + __aligned_u64 bcf_buf;
5 + __u32 bcf_buf_size;
6 + __u32 bcf_buf_true_size;
7 + __u32 bcf_flags;
8 };

Listing 5. New fields to the BPF_PROG_Load command.

BCF Format.To facilitate efficient transmission of the refine-

ment condition and its proof, we devised an independent bi-

nary encoding format based on a compact u32-based scheme.

The operator of a symbolic expression (or, equivalently, the

rule corresponding to a proof step) is encoded in the first

eval_bool cong transpm0pm1exp0… pm0

step s4-s6:
BCF_VAR 0xf BCF_VAL BPF_ANDop0op1

:sym&0xf

Figure 7. Encoding for sym&0xf and the trans, cong, and
eval_bool steps, where pm𝑖 , exp𝑖 , and op𝑖 denote the offset
of a premise, expression, and operand, respectively.

four-byte unit, which encapsulates operation, length, and

type information; the operands follow thereafter. For nested

expressions, each sub-expression is encoded independently

and referenced by its relative offset. Similarly, proof steps

reference their premises via offsets. Notably, the encoding

includes only the rules and premises, with the conclusions

omitted (as they are computed by the checker), thereby re-

ducing the overall proof size. For most operators (e.g., ALU
and comparisons), we reuse the eBPF encoding [44] and

extend it with new operations for manipulating symbolic

expressions—such as the extract operation for retrieving

segments of a variable for size casting. Figure 7 illustrates

the encoding of the sym&0xf expression from Figure 2 and

three proof steps (s4 to s6) from Figure 6.

BCF Track.We extend the eBPF verifier to produce the re-

finement condition. The backward analysis builds upon the

existing backtrack_insn() routine, which performs a pre-

liminary analysis of dependent registers and their definitions

and has been extended to support more register types. The

register set is maintained as an integer mask, allowing the ad-

dition or removal of registers via simple bitwise operations.

To maximize reuse of the verifier’s abstraction, symbolic

tracking is integrated directly into the analysis phase (via

do_check() [9]) and is enabled exclusively during refine-

ment, ensuring that standard analysis remains unaffected.

The verifier records each branch decision during its analy-

sis [11], and symbolic tracking leverages this branch history

to follow the corresponding path suffix. The target register’s

symbolic expression is directly encoded in the binary for-

mat. Once constructed, the verifier refines its abstraction and

emits the refinement condition to the shared buffer. After

the proof is validated, the verifier resumes analysis on the

same instruction using the refined abstraction.

Proof Check.We implement an in-kernel proof checker to
validate proofs submitted from user space. Since the refine-

ment condition involves only fixed-size variables, proof gen-

eration is decidable [47, 49, 62]. The proof checker requires

support for a fixed set of fundamental proof rules (e.g., resolu-
tion and bit-blasting [73, 100]) to be complete for expressing

any proof [77]. Consequently, the checker remains stable

and is agnostic to changes in the user space toolchains. Cur-

rently, our checker supports 45 primitive rules, including the

standardized rules for Boolean, equality, and bit-vector theo-

ries [39], which suffice for accepting a broad range of proofs.
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The proof checker validates proofs in three stages. First, it

performs efficient format and type checking by verifying

that each step’s encoding is valid and that each expression’s

type conforms to the rule’s definition. Next, it applies each

rule to compute the conclusion of every step. Finally, the

computed conclusion is compared against the refinement

condition stored in the verifier’s state to confirm its validity.

Loader and Solver. In user space, we modified both the

loader (bpftool and libbpf) and the cvc5 solver. The loader

tools facilitate kernel interaction and the loading of the eBPF

extension, while cvc5 is an SMT solver with robust proof sup-

port [15]. The loader tools have been adapted to retrieve and

translate the refinement condition from the BCF format into

the solver’s format for the fixed-size bit-vector theory [16],

in accordance with the SMT-LIB standard [17]. The loader

then communicates with the solver, which is invoked to rea-

son about the refinement condition. Moreover, we extended

the cvc5 solver to produce proofs in the BCF format, thereby

enabling efficient proof checking.

Limitations. Our current implementation serves as a frame-

work and requires more engineering efforts to further en-

hance the verifier. First, while our symbolic tracking fully

supports ALU and branch operations, its support for stack

state tracking is incomplete. At present, the implementa-

tion accurately handles register-sized stack spills; however,

spills of other sizes remain untracked and are conserva-

tively marked as unbounded. This limitation can lead to

over-approximation in certain cases and yield weakened

refinement conditions that do not hold (subsection 6.2). Nev-

ertheless, it does not affect the soundness of BCF, as proofs

cannot be generated for such conditions.Wewill enhance the

symbolic tracking when frequent bytecode patterns are ob-

served in practice. Second, proof developments in the solver,

such as the addition of new proof rules, will necessitate cor-

responding conversion from the solver’s format to the BCF

format. Importantly, the in-kernel proof checker remains sta-

ble, and this conversion can be confined to the user space. For

instance, the loader can map solver-specific proof steps into

the checker’s canonical rule set. Because the checker is com-

plete, such translations are feasible. If a new rule proves both

widely applicable and sound, the checker can be extended

accordingly, which is incremental and optional.

6 Evaluation

In this section, we evaluate BCF by employing a set of real-

world eBPF programs that, despite being safe, are erroneously

rejected by the current verifier.We apply our method to these

programs and assess the acceptance rate and the associated

overhead. The key findings are:

• Improved Precision: By integrating BCF, the veri-

fier successfully loads 403 out of 512 eBPF programs,

achieving an acceptance rate of 78.7%.

• Efficient Proof Checking: The average proof size is

limited to 541 bytes, while the proof checking process

requires only 48.5 microseconds on average.

• Low Overhead: The overall analysis time averages

9.0 seconds, with the proof-checking phase accounting

for less than 1% of the total time and the user space

component comprising an average of 21%.

Setup. All experiments were conducted on a Linux server

equipped with an AMD EPYC 9654 96-core processor (with

two threads per core) and 756 GiB of memory. The host Linux

version was v5.15. We boot the kernel with our BCF patches

within virtual machine instances created using QEMU 6.2.0

with KVM acceleration. Each guest environment utilized

a minimal Debian distribution disk image. In addition to

common configurations, eBPF-specific build options were

enabled, following the standard setup[3].

6.1 Dataset

Collecting eBPF programs that are erroneously rejected due

to the verifier’s imprecision poses significant challenges,

because: (1) existing programs are carefully engineered to

pass the verifier, and manual modifications (e.g., reverting
the workaround code to reflect the developer’s intention)

risk introducing bias and errors; (2) maintainers rarely pub-

lish rejected programs, and developers typically refactor the

"problematic" code before release. Our manual search of

mailing lists and repositories yielded only nine instances of

directly rejected programs, a finding corroborated by Ger-

shuni et al. [7]. To address this, we adopt a compiler-driven

procedure to enrich our dataset, which is inspired by the

development processes of 46 popular user space projects

listed in the eBPF official application landscape [42].

// We need to write the inline assembly as the verifier
// does not understand that val_len has already been
// bounds-checked above, because Clang spilled it to
// the stack.
asm volatile(

// Note: this branch is never taken, but we
// need it to appease the verifier.
"if %2 > " STR(CUSTOM_LABEL_MAX_VAL_LEN) " goto 2f\n"
"r1 = %1\n"
"r2 = %2\n"
...

);

Listing 6. Incorrect rejection of compiler produced bytecode.

In practice, eBPF extensions are developed in high-level

languages such as C and compiled using GCC or Clang to

produce the bytecode processed by the verifier. Notably, the

verifier often accepts only those objects produced under a

specific compiler configuration—i.e., a particular compiler

version and optimization level—while rejecting those gen-

erated under alternative configurations [5]. Listing 6 illus-

trates a real-world case [74] where the verifier is incapable
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Table 2. Details of a subset of compiled programs. The full

dataset is publicly available [83].

Object Project Size Loc Description

bpf_lxc.o [30] Cilium 269 KiB 2,450 Container identity and policy

bpf_host.o [29] Cilium 376 KiB 2,086 Host level policy and route

pping_kern.o [91] xdp-project 19 KiB 1,546 XDP packet timestamping

xdp_synproxy.o [92] xdp-project 9.9 KiB 821 XDP-based SYN proxy

felix_bin_bpf.o [26] Calico 188 KiB 2,162 Pod network policy

ksnoop.bpf.o [53] BCC 6.3 KiB 461 Kernel function tracing

of accepting even the compiler-produced bytecode. As a re-

sult, developers are forced either to adopt a narrow “verifier-

friendly” configuration—which may yield sub-optimal byte-

code—or to write the bytecode directly, an error-prone and

labor-intensive process.

The core issue is that the compilers are capable of pro-

ducing diverse bytecode patterns, while the verifier is not

precise enough to analyze and accept them. This observation

motivates our approach: by exploiting compiler diversity, we

generate a broad spectrum of bytecode patterns that occur

frequently in practice, thereby exposing the verifier’s im-

precision. This strategy is effective for two primary reasons.

First, different compiler configurations producemarkedly dif-

ferent bytecode, affecting aspects such as register allocation

and inlining decisions. Second, even minor modifications

in bytecode can trigger substantially different verifier be-

haviors; for instance, substituting arithmetic with logical

operators can alter the verifier’s approximation, thereby im-

pacting the subsequent range analysis and branch decisions.

Accordingly, we compiled the programs from various

projects using multiple compilers (Clang-13 to Clang-21) un-

der different optimization levels (-O1 to -O3). These include
widely deployed, production-grade systems such as Cilium

and Calico, as illustrated by Table 2. In total, 106 unique

source programs were compiled into multiple variants. Since

these programs are confirmed to load under specific config-

urations (as validated in our evaluation), the objects under

alternative configurations remain semantically equivalent

and safe. Therefore, any rejection indicates a false positive.

Next, we loaded all the resulting objects into Linux-6.13.4,

the latest release prior to our submission, and deduplicated

them based on their bytecode. In total, 503 unique objects

were erroneously rejected due to fourteen different types of

reasons, including invalid memory access or register usage,

etc. With the nine manually collected instances, the final

dataset comprises 512 distinct eBPF objects, ranging in size

from 0.5 to 376.2 KiB with an average of 118.1 KiB (after

stripping). These objects, compiled from real-world projects

using common compilers, reflect representative bytecode

patterns found in practical applications.

6.2 Precision

We evaluate BCF by loading all programs from our dataset.

As a baseline, we use the Linux kernel’s in-tree verifier, which

is actively maintained by the kernel community. Notably,

the improvements by Vishwanathan et al. [87] have been up-

streamed into the kernel verifier and are therefore inherently

included in this baseline. We also compare with PREVAIL [7],

a recent verifier that explores new abstract domains.

With the BCF enhancements, 403 out of 512 programs are

automatically verified and accepted, yielding an acceptance

rate of 78.7%. Among the 106 source programs, 75 are fully

accepted, i.e., all of their configuration variants pass verifi-

cation. The accepted programs encompass a wide range of

real-world eBPF applications (such as classifier and tracer,

etc.), exhibiting diverse bytecode patterns and functionalities.
Bytecode differences, such as instruction selection and regis-

ter usage, pose distinct analysis challenges as they trigger

different analysis procedures and abstract operators. There-

fore, this automated acceptance demonstrates a substantial

improvement in precision, thereby enhancing both eBPF us-

ability and kernel extensibility. We further evaluated these

programs using PREVAIL [48], which improves the preci-

sion via the Zone abstraction; however, due to compatibility

issues arising from its Windows-specific design [66], fewer

than 1% of the programs could be loaded.

Our analysis of the remaining rejected programs reveals

three primary causes. First, refinement was not triggered for

four programs (0.8%). At present, BCF is integrated at several

general rejection sites, covering the most common analysis

failures. For these four cases, however, the verifier terminates

at rejection points that have not yet been instrumented, and

thus refinement is not invoked. Second, 82 programs (16%)

were rejected because the refinement conditions were not

met due to the limitations of our current implementation,

as mentioned in section 5, and thus, the solver produced

counterexamples rather than proofs for those cases. Finally,

23 programs (4.5%) were rejected upon reaching the one-

million instruction limit [6].

The first two causes can be mitigated through further en-

gineering efforts: (1) extending the refinement to additional

error-reporting locations can be seamlessly integrated into

our framework, and (2) enhancing the symbolic tracking

logic can be adopted on demand. Notably, extending sym-

bolic tracking is more straightforward than overhauling the

verifier’s abstract domain, as it primarily involves encoding

computations into symbolic expressions while complex rea-

soning is conducted in user space. The third issue arises from

some loop constructs: without BCF, such programs would

have been rejected after only a few iterations; BCF permits

the analysis to continue until the limit is reached. Addressing

this necessitates further loop analysis and remains orthog-

onal to our current focus on precision improvement and is

deferred to future work.

Summary. BCF enables the verifier to automatically ac-

cept 403 additional programs while the rest can be mostly

addressed via more engineering efforts, thereby achieving

significant precision improvement.
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6.2.1 Examples. In the following, we present three real-

world examples erroneously rejected by the current verifier

but are accepted after applying BCF’s refinement.

1 static int save_str_to_buffer(...)
2 {
3 type_pos = *off;
4 if (MAX_BUFFER_SIZE - type_pos < (1 + sizeof(int) + 1))
5 return 0;
6 /* at least six bytes are available */
7 size_pos = type_pos + 1;
8 str_pos = size_pos + sizeof(int);
9 read_size = (MAX_BUFFER_SIZE - str_pos);
10 bpf_probe_read_str(&(buf[str_pos], read_size, ptr);
11 ...
12 }

Listing 7. Incorrect rejection of safe memory access.

Listing 7 shows a case derived fromKubeArmor [10], where a

safe memory access is incorrectly rejected. The if-statement

(lines 3–5) guarantees that at least six bytes are available, en-

suring that read_size does not exceed the memory bound.

However, the verifier fails to capture the value dependencies

among read_size, str_pos, and size_pos, instead over-

approximating their ranges at each step (lines 7–9, similar to

Figure 2). This imprecision leads to the incorrect conclusion

that the access within the helper function is unsafe (line

10). In contrast, BCF accurately captures the possible val-

ues of read_size using the symbolic expressions involving

size_pos and str_pos. Once the proof is validated, the ver-
ifier confirms that read_size remains within safe bounds,

allowing the analysis to proceed with a refined abstraction

and correctly accept the extension.

1 w1 s>>= 31 // w1 ∈ [-1,0]
2 w1 &= -134 // w1 ∈ [s32_min,0x7fffff7a]
3 // (fact: w1 == -134 or 0)
4 if w1 s> -1 goto out // fallthrough, w1 <= -1
5 // (fact: w1 == -134)
6 if w1 != -136 goto out // fallthrough
7 r1 = r2 // (unreachable)

Listing 8. Incorrect rejection in the unreachable path.

Listing 8 presents a rejection in an unreachable path, drawn

from the Cilium WireGuard program. After a signed right

shift by 31 bits, the sub-register w1 can only be −1 or 0; while
this precise information is captured by the signed interval

domain, other domains over-approximate it to unbounded

ranges. Subsequently, after a bitwise AND with −134, w1
can only be −134 or 0; however, due to limitations in han-

dling logical operators, the signed interval domain is over-

approximated. In the non-taken branch of if w1 > -1, w1
must be −134 (satisfying w1 ≤ −1), which implies that the

subsequent condition w1 ≠ −136 is always met and renders

the code from line 6 to line 7 unreachable. Nevertheless,

the verifier imprecisely concludes that w1 might equal −136,
thereby rejecting the program along an unreachable path.

When BCF refinement is triggered, the generated proof con-

firms that the path constraint is never satisfied, enabling BCF

to prune the unreachable path and eliminate the imprecision.

1 r1 = r5
2 r1 &= 0xffff // r1 ∈ [0,0xffff]
3 if r1 > 0x3fa8 goto out // r1 ∈ [0,0x3fa8]
4 r5 &= 0xffff // r5 ∈ [0,0xffff]
5 // (fact: r5 ∈ [0,0x3fa8])
6 perf_event_output(..., r5) // (Incorrect rejection)
7 ...

Listing 9. Incorrect rejection due to the imprecise range of

the size parameter r5.

Listing 9 illustrates a false rejection in BCC due to the insuf-

ficient tracking of variable relationships. Registers w1 and

w5 are assigned the same source value (line 1). After a com-

parison at line 3, the expression w1&0xffff is constrained to
be at most 0x3fa8. Given that both registers share the same

source, w5 should similarly be bounded by 0x3fa8, ensuring
that the access at line 7 is safe. However, the verifier fails to

recognize the equivalence between the registers, erroneously

propagating the range for w5 as [0, 0xffff]. By leveraging

precise symbolic expressions for w1 and w5, BCF refines the
range of r5 after proof checking, resulting in the correct

acceptance of the program.

6.3 Component-Wise Evaluation

In this section, we present a component-wise evaluation, and

Table 3 summarizes the key results.

Table 3. Key metrics for each component of BCF.

Metric Min Avg Max

Refinement Frequency 1 446 16,048

Symbolic Track Length 7 102 373

Condition Size (bytes) 88 836 2,128

Proof Check Time (𝜇s) 31 49 1,845

Proof Size (bytes) 136 541 46,296

Analysis Duration. The total analysis time per program in

our dataset ranges from 0.7 to 182.0 seconds, with an average

of 9.0 seconds. Since every program invokes BCF at least

once, this total time comprises both the kernel space veri-

fier’s analysis and the associated user space reasoning. On

average, kernel space analysis accounts for 79.3% of the over-

all time, whereas user space reasoning contributes 20.7%.

Despite the nontrivial procedures involved in user space

reasoning, its impact is mitigated by two factors: (i) BCF is

invoked on demand only when the verifier is unable to pro-

ceed (and thus less frequently after refinement), and (ii) each

refinement is confined to a suffix of a single execution path,

thereby reducing the complexity of the refinement condition.

Consequently, the overall analysis is primarily driven by the

efficient abstraction interpretation in kernel space, and the

one-time, infrequent nature of load-time analysis ensures

that the total time remains within acceptable bounds.
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Figure 8. Distribution of proof sizes, with 99.4% being less

than 4096 bytes.

Refinement Frequency. Each program may trigger mul-

tiple invocations of BCF along different analysis paths. In

our dataset, BCF was requested an average of 446 times per

program, with the number of requests ranging from 1 to

16,048. Notably, 81% of the programs required fewer than

100 refinements, while only 6.2% necessitated more than 900

requests. Furthermore, the fraction of instructions trigger-

ing a refinement is less than 0.1% of the total instructions

processed on average. This result underscores both the on-

demand nature of the refinements and the predominance of

efficient kernel space analysis. The variability in the num-

ber of refinement requests—with outliers such as 16,048—is

primarily attributable to loops in the program, where the ver-

ifier iterates the loop until an upper bound or fixed point is

reached. Nonetheless, the overall analysis remains efficient,

as each request is handled within a short time frame.

Refinement Condition. The first step in BCF involves per-

forming symbolic tracking to generate a refinement condi-

tion. We recorded the number of instructions analyzed by

both the symbolic tracking and the backward analysis. The

track length varies between 7 and 373 instructions, with an

average of 102 instructions, which constitutes only 3.4% of

the total instructions processed. This observation indicates

that the suffix under analysis is substantially shorter than the

entire analysis path. The efficiency is primarily achieved by

leveraging backward analysis, which exploits the inherent

locality in most real-world programs. Consequently, sym-

bolic tracking focuses on the suffix relevant to the target

registers, yielding a compact refinement condition with an

average size of 836 bytes (ranging from 88 to 2128 bytes) that

facilitates efficient transmission.

ProofCheck.After generating the refinement condition, the

verifier validates the associated proof. We measured both

the proof size and the proof check time. On average, the

proof size is 541 bytes, ranging from 136 to 46,296 bytes. As

illustrated in Figure 8, the vast majority of proofs are rela-

tively small, with 99.4% being less than 4096 bytes (i.e., fitting

within a single memory page), and only 0.6% exceeding this

size. This observation is consistent with the compact nature

of the refinement condition, given that the proof size corre-

lates with its complexity. Even in cases with larger proofs,

proof checking remains efficient, averaging 49 microseconds

(𝜇s) and ranging from 31 to 1,845 𝜇s. This efficiency is at-

tributable to the proof-checking process, which primarily

involves the sequential application of small, primitive rules.

Summary. By leveraging workload separation and efficient

proof checking, BCF substantially enhances the verifier while

imposing low kernel space complexity and overhead.

7 Discussion

Load Time. BCF does not affect the programs already ac-

cepted. The load time of other safe programs—those that

would otherwise be incorrectly rejected—may increase due

to the refinement, e.g., when nontrivial user space reasoning

is required. In practice, this latency is a necessary trade-off

for enabling acceptance, and several techniques can miti-

gate its impact. Because the verifier employs a fixed abstract

interpretation algorithm, its analysis is deterministic. Conse-

quently, for a given extension, repeated loads will request

the same set of conditions. This enables effective caching of

those conditions together with the proofs, which can be dis-

tributed alongside the extension. The loader can then consult

the cache, resorting to the solver only on cache misses. Given

the verifier’s stability, cache hit rates are expected to be high,

thereby reducing time for subsequent loads. As BCF operates

independently of user space components, such strategies are

fully compatible and can be deployed orthogonally.

Limitations. BCF enhances the verifier’s precision closer to

that of symbolic execution through on-demand refinement.

Nonetheless, several factors can still cause unhandled false

rejections. First, imprecision in the current implementation

(section 5)mayweaken generated refinement conditions. Sec-

ond, although rare, highly complex conditions may cause the

SMT solver to fail or time out, resulting in rejection; this can

often be mitigated through solver backend tuning. Finally, if

analysis reaches the one-million–instruction threshold due

to loops, refinement is no longer invoked and BCF cannot

intervene. A potential approach is to embed precomputed

fixpoints for the loop directly within the extension. The ver-

ifier could then validate these fixpoints in a single pass and,

upon failure, issue refinement conditions to re-establish their

correctness. Our present focus is on proof-guided refinement,

and we view such extensions as valuable future work.

8 Related Work

Verifier Improvement. Prior research has focused on im-

proving verifier algorithms and incorporating more pre-

cise abstract domains. For instance, Vishwanathan et al. im-

proved the analysis in the tristate abstract domain [87]. They
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proposed an automated method for generating verification

conditions for the verifier’s range analysis, thereby verifying

the soundness of that component [88]. PREVAIL [7, 48] lever-

ages the Zone [67] domain, which tracks differences between

pairs of registers and offsets, to achieve improved precision.

In comparison, BCF preserves the verifier’s simplicity while

enhancing precision and overcoming the intrinsic limita-

tions of the existing abstract domains through on-demand

refinement and efficient proof checking.

Fault Isolation. Fault isolation techniques employ hard-

ware features or runtime checks to confine resource accesses

within permitted domains [27, 46, 51, 59, 63, 69, 79, 95]. For

example, KFlex [41] decomposes extension safety into two

aspects: kernel-interface compliance (ensuring safe access to

kernel-owned memory) and extension correctness (guaran-

teeing safe access to extension-owned resources and termina-

tion). Kernel-interface compliance is enforced by the verifier,

while extension correctness is maintained via lightweight

runtime checks. MOAT [64] utilizes Intel Memory Protec-

tion Keys to sandbox eBPF programs at runtime, Nooks [84]

isolates extensions by executing them in separate memory

domains with dedicated page tables, and VINO [79] enhances

fault isolation by combining binary instrumentation with

transactional rollback to isolate misbehaving extensions.

Our approach complements these efforts. In particular, be-

cause KFlex relies on the verifier to ensure kernel-interface

compliance, any imprecision in this stage can be mitigated

using BCF. Meanwhile, the lightweight runtime checks used

for extension correctness offer flexibility. By combining both

techniques, higher extensibility can be achieved.

Proof-Carrying Code (PCC). PCC, introduced by Nec-

ula [70], requires extensions to be accompanied by formal

proofs certifying adherence to specific safety properties.

The code provider verifies the properties and produces a

corresponding proof, which is then validated by the con-

sumer. Building on this concept, Nelson et al. applied PCC to

eBPF [72] by encoding the semantics of eBPF in Lean [40] to

generate proofs. Similarly, Zhao et al. employ established ver-

ification toolchains to verify annotated C code—using stan-

dard preconditions, postconditions, and loop invariants—and

subsequently submit the resulting proof [89].

Although both PCC-based approaches and BCF adopt

proofs, BCF differs in several key aspects. First, BCF re-

tains the efficient in-kernel verifier to handle the bulk of

the analysis, delegating only exceptional cases to user space.

In contrast, PCC requires the code provider to undertake

the entire verification process. Second, our approach uses

proofs solely for abstraction refinement, whereas PCC uses

proof to certify every safety property. BCF overcomes a key

limitation of PCC-based approaches—namely, proof size. In

practice, generating proofs for all instructions and proper-

ties in real-world extensions can result in impractically large

proofs (e.g., proofs for tens of instructions can reach up to 31

MiB using existing PCC implementations). Moreover, PCC-

based techniques necessitate user annotations within the

source code, whereas our approach is fully automated and

does not require user annotations.

Refinement. The counterexample-guided abstraction refine-

ment (CEGAR) framework [31–33] has been widely adopted

in model checking by employing predicate abstraction to

generate an initial abstract model and refining it through

the incorporation of additional predicates when spurious

counterexamples are encountered. Although both CEGAR

and BCF incorporate refinement, our approach differs in two

significant aspects. First, BCF introduces workload separa-

tion and eliminates trust assumptions through formal proof,

thereby ensuring that the in-kernel verifier remains efficient,

whereas CEGAR performs refinement entirely within the

same space. Second, BCF strategically combines analysis

techniques at different levels of precision, thereby preserving

the simplicity of the in-kernel verifier, while CEGAR relies

on predicate abstraction for both analysis and refinement—a

process that entails nontrivial and complex reasoning.

Safe Languages. Several studies have explored the design

of safe kernel-extension languages [8, 58, 71, 76]. Jia et al.
advocate writing kernel extensions in Rust while relying on a

trusted user space toolchain [55, 56]. SafeDrive [98] employs

predefined annotations to enable the compiler to generate

runtime checks, and SPIN [21] leverages Modula-3 to enforce

memory safety through its type system. BCF can be adopted

to complement these approaches by (1) enhancing the verifier

to obviate certain safety checks adopted by the language

runtime and (2) analyzing the bytecode annotated by the

compiler to reduce the trust base of user space toolchains.

9 Conclusion

In this paper, we have presented a proof-guided abstrac-

tion refinement approach that significantly enhances the

precision of the in-kernel verifier while maintaining low

complexity and overhead in kernel space. We implemented

our approach in the eBPF verifier, namely BCF, which dele-

gates refinement tasks to user space on demand and employs

formal proofs to validate the feasibility of each refinement,

thereby eliminating hidden trust. Our comprehensive eval-

uation using real-world eBPF programs demonstrates that

BCF successfully analyzes and loads 403 out of 512 programs

that were incorrectly rejected, substantially improving the

verifier precision and kernel extensibility.
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