
Prove It to the Kernel: Precise Extension Analysis
via Proof-Guided Abstraction Refinement

Hao Sun, Zhendong Su
ETH Zurich

Extensible Kernel

DriverFS MemorySche …

Kernel

Ext0 Ext1 Ext2 Ext3 Extn

Extension Safety

DriverFS MemorySche …

Kernel

Ext0 Ext1 Ext2 Ext3 Extn

In-Kernel Extension Analysis

DriverFS MemorySche …

Kernel

Ext0 Ext1 Ext2 Ext3 Extn

Verifier

eBPF

5

eBPF Verifier

6

Approximation
• Range Analysis
• Branch Decision
• Stack State Track
• …

Safety Check
• Access within range
• …

Verifier

• Approximate the possible value set of each variable
• Check operation safety against the approximation
• Load the extension only if it passes the verifier

Precision vs. Complexity

Overhead
Attack surface

Usability
Extensibility

Kernel

Ext

Verifier

Core

Key challenge: achieving higher precision while maintaining low complexity

Imprecisions

8

Verifier

Over-approximation:
• Non-linear operation
• Relational information

lossing
• Imprecision propagation
• …

Safety Check (V.s)
• Access within range
• …

Instruction Abstraction
1: r1 = map_lookup(…) r1 = ptr(size=16)
2: r2 &= 0xf r2 ∈ [0,15]
3: r1 += r2 r1.off ∈ [0,15]
4: r3 = 0xf - r2 r3 ∈ [0,15]
5: r1 += r3 r1.off ∈ [0,30]

6: r0 = *(u8*)r1 Unsafe, rejected…

Our Goal

Overhead
Attack surface

Usability
Extensibility

Goal: significantly enhance the precision with linear-time kernel space complexity.

Kernel

Ext

Verifier

Core

Key Idea

User
Space

Kernel

Proof

Keep the verifier simple, delegate nontrivial reasoning, and bridge the gap with proofs.

11

Imprecise
Abstraction

Refined
Abstraction

Program State

User Space

Kernel Space

Refinement
Task

Reasoning
Tools Proof

Proof
Checker

• On demand abstraction refinement:
• The kernel verifier runs cheap analysis
• Stops only when precision limits are reached

• Refinement soundness as proof obligation:
• Encode refinement soundness as a formal formula
• User space solver produces a formal proof

• Kernel space proof checking:
• Kernel proof checker validates the proof
• Verifier continues with the refined abstraction

Proof-Guided Abstraction Refinement

12

r1.off
[0,30]

sym_expr

[0,15]∈

=

refine

∈

Soundness

Proof-Guided Abstraction Refinement

13

Analysis

Backward
Analysis

Proof Check

Refinement
Condition

Proof

Condition
Generation

User
Space

Workflow

Refining
Abstraction

Symbolic
Tracking

Refined
Abstraction

Workflow

14

Instruction Abstraction Refinement

1: r1 = map_lookup(…) r1 = ptr(size=16) r2 = sym

2: r2 &= 0xf r2 ∈ [0,15] r2 = sym&0xf

3: r1 += r2 r1.off ∈ [0,15] r1.off = sym&0xf

4: r3 = 0xf - r2 r3 ∈ [0,15] r3 = 0xf - sym&0xf

5: r1 += r3 r1.off ∈ [0,30] r1.off = (sym&0xf)
 + (0xf - sym&0xf)

6: r0 = *(u8*)r1 Unsafe, refine… Condition: r1.off <= 15

6: … r1.off ∈ [0,15] Proved and r1.off refined

Refinement

15

s7: false_elim

s8: contra

s1: assume

s0: assume

s6: trans

s4: cong s5: eval_bool

s3: trans

s2: sub_elim

off=(sym&0xf)+0xf… (sym&0xf)+0xf…=15

off=15

(off>15)=(15>15) (15>15)=false

(off>15)=false

(off>15)¬(off>15)

Proof Check

Complexity

Proof-carrying code

VC
Generator

Extension Proof

Proof
Checker

In-kernel verifier

Verifier

Extension

Proof-guided abstraction
refinement

Verifier

Extension Reasoning
Tools

Proof
Checker

Refine

Complexity

BCF: eBPF Certificate Framework

17

• Refinement procedure in the verifier (1.7K LOC)
• Triggered when analysis stalls
• Produces a refinement condition

• Loader program
• Receive the condition, translates it for the solver

• CVC5 SMT solver
• Performs reasoning and generates a formal proof

• In-kernel proof checker (5K LOC)
• Performs linear-time proof validation

User Space

Kernel Space

eBPF
Verifier

Loader CVC5

Proof
Checker

BCF: eBPF Certificate Framework

18

• Initial prototype open-sourced:
• https://github.com/SunHao-0/BCF/tree/artifact-evaluation

• Continuous improvement:
• https://github.com/SunHao-0/BCF/tree/main
• Proof checker completely rewritten
• Supports 50 proof rules:

• 14 core, 33 boolean, 3 bitvector rules
• 151 rewrite rules automatically converted from CVC5

RARE rewrites
• Ultimate goal: make this happen in the Linux kernel.

https://github.com/SunHao-0/BCF/tree/artifact-evaluation
https://github.com/SunHao-0/BCF/tree/main

• Compiler-driven approach to derive a dataset
• For the same program, compile it with different configurations
• For the same source, rejection in an alternative configuration

indicates a false rejection
• 512 programs collected in total

• from real-world project
• compiled with widely-adopted compilers

• Sizes range from 0.5 to 376 KiB

19

Evaluation

20

• 403 out of 512 programs automatically loaded
• 78.7% accepted, 21.3% still rejected
• Reasons for remaining rejections:

• Refinement not triggered for four programs
• 82 were due to condition not satisfied
• 23 were due to reaching the one million instruction limit

• The first two cases can be solved with further engineering efforts
• The last case requires better loop handling

Key Results

21

Key Results

• 403 out of 512 programs automatically loaded
• 78.7% accepted, 21.3% still rejected
• Reasons for remaining rejections:

• Refinement not triggered for four programs
• 82 were due to condition not satisfied
• 23 were due to reaching the instruction limit

• The first two cases can be solved with further engineering
• The last case requires better loop handling

Thank you!

