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eBPF Verifier
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Approximation 
• Range Analysis 
• Branch Decision 
• Stack State Track 
• …

Safety Check 
• Access within range 
• …

Verifier

• Approximate the possible value set of each variable 
• Check operation safety against the approximation 
• Load the extension only if it passes the verifier
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Key challenge: achieving higher precision while maintaining low complexity



Imprecisions
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Verifier

Over-approximation: 
• Non-linear operation 
• Relational information 

lossing 
• Imprecision propagation 
• …

Safety Check (V.s) 
• Access within range 
• …

Instruction Abstraction
1: r1 = map_lookup(…) r1 = ptr(size=16)
2: r2 &= 0xf r2 ∈ [0,15]
3: r1 += r2 r1.off ∈ [0,15]
4: r3 = 0xf - r2 r3 ∈ [0,15]
5: r1 += r3 r1.off ∈ [0,30]

6: r0 = *(u8*)r1 Unsafe, rejected…



Our Goal
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Goal: significantly enhance the precision with linear-time kernel space complexity.
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Key Idea
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Keep the verifier simple, delegate nontrivial reasoning, and bridge the gap with proofs.
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• On demand abstraction refinement: 
• The kernel verifier runs cheap analysis 
• Stops only when precision limits are reached 

• Refinement soundness as proof obligation: 
• Encode refinement soundness as a formal formula 
• User space solver produces a formal proof 

• Kernel space proof checking: 
• Kernel proof checker validates the proof 
• Verifier continues with the refined abstraction

Proof-Guided Abstraction Refinement
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Proof-Guided Abstraction Refinement
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Instruction Abstraction Refinement

1: r1 = map_lookup(…) r1 = ptr(size=16) r2 = sym

2: r2 &= 0xf r2 ∈ [0,15] r2 = sym&0xf

3: r1 += r2 r1.off ∈ [0,15] r1.off = sym&0xf

4: r3 = 0xf - r2 r3 ∈ [0,15] r3 = 0xf - sym&0xf 

5: r1 += r3 r1.off ∈ [0,30] r1.off = (sym&0xf)
         + (0xf - sym&0xf)

6: r0 = *(u8*)r1 Unsafe, refine… Condition: r1.off <= 15

6: … r1.off ∈ [0,15] Proved and r1.off refined

Refinement
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s7: false_elim

s8: contra

s1: assume

s0: assume

s6: trans

s4: cong s5: eval_bool

s3: trans

s2: sub_elim

off=(sym&0xf)+0xf… (sym&0xf)+0xf…=15

off=15

(off>15)=(15>15)  (15>15)=false

(off>15)=false

(off>15)¬(off>15)

Proof Check



Complexity
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BCF: eBPF Certificate Framework
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• Refinement procedure in the verifier (1.7K LOC) 
• Triggered when analysis stalls 
• Produces a refinement condition 

• Loader program 
• Receive the condition, translates it for the solver 

• CVC5 SMT solver 
• Performs reasoning and generates a formal proof 

• In-kernel proof checker (5K LOC) 
• Performs linear-time proof validation

User Space

Kernel Space
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Verifier

Loader CVC5

Proof 
Checker



BCF: eBPF Certificate Framework
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• Initial prototype open-sourced: 
• https://github.com/SunHao-0/BCF/tree/artifact-evaluation  

• Continuous improvement: 
• https://github.com/SunHao-0/BCF/tree/main 
• Proof checker completely rewritten 
• Supports 50 proof rules: 

• 14 core, 33 boolean, 3 bitvector rules 
• 151 rewrite rules automatically converted from CVC5 

RARE rewrites 
• Ultimate goal: make this happen in the Linux kernel.

https://github.com/SunHao-0/BCF/tree/artifact-evaluation
https://github.com/SunHao-0/BCF/tree/main


• Compiler-driven approach to derive a dataset 
• For the same program, compile it with different configurations 
• For the same source, rejection in an alternative configuration 

indicates a false rejection 
• 512 programs collected in total 

• from real-world project 
• compiled with widely-adopted compilers 

• Sizes range from 0.5 to 376 KiB
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Evaluation
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• 403 out of 512 programs automatically loaded 
• 78.7% accepted, 21.3% still rejected 
• Reasons for remaining rejections: 

• Refinement not triggered for four programs 
• 82 were due to condition not satisfied 
• 23 were due to reaching the one million instruction limit 

• The first two cases can be solved with further engineering efforts 
• The last case requires better loop handling

Key Results
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Key Results

• 403 out of 512 programs automatically loaded 
• 78.7% accepted, 21.3% still rejected 
• Reasons for remaining rejections: 

• Refinement not triggered for four programs 
• 82 were due to condition not satisfied 
• 23 were due to reaching the instruction limit 

• The first two cases can be solved with further engineering 
• The last case requires better loop handling



Thank you!


