HEALER: Relation Learning Guided Kernel Fuzzing

Hao Sun!, Yuheng Shen’, Cong Wang!, Jianzhong Liu!, Yu Jiang®™", Ting Chen™?, Aiguo Cui**
KLISS, BNRist, School of Software, Tsinghua University, Beijing, China’
Center for Cybersecurity, University of Electronic Science and Technology of China, Chengdu, China?
Huawei Technologies Co., Ltd, China®

N

HUAWEI

@® Coverage Guided Kernel Fuzzing

@ Motivation

©® Relation Learning

@ Implementation

O Evaluation

® Future Work

Coverage-Guided Kernel Fuzzing

Fuzzing 101

Source
Code

Fuzz Driver

Fuzzable Coverage
Program Feedback > ~ Saver
Random Interesting
Input Path
| < >
Mutator <«€—Select m

Coverage Guided Kernel Fuzzing

- —

\

Call Sequences

1

|

|

:

Syscall |
Description :
1

1

1

1

N - —

/ \
: [Kernel] [Sanitizer] !
'__Source Configs |1

1 2
Refine [3
Feedback [e= | Target | |
________ | Kernel |
f, N ! 1 |
! | \]
: Gen : Call Sequence @~ ~——------ ’
\\ _______ ’/ l

Coverage Guided Kernel Fuzzing: Input

Call Sequence

sock fd = socket (AF_INET, SOCK_STREAM, 0)
bind(sock fd, &addr, sizeof (addr)
listen(sock_fd, ..)

=) accept (sock_fd, &peer addr, &size)

+ Structure and partial semantic aware
« Setup kernel state

* Reach deep kernel logic GOOD
JOB!

Syscall Description Language: Syzlang

resource sock[fd]
resource sock_in[sock]

socket$inet(domairfconst[AF_INET])t ypefflags[socket_type], Jorotoint32) sock_in
accept$inet(rdsock_in, peer ptrlout, sockaddr_in], peerlien ptr[mout,M) sock_in
bind$inef{(fdsock_in,Jaddr ptrlin, sockaddr_in], addrlen len[addr])

listen(fdsock, backlogint32)

* Rich type, type constructors —_

« Semantic modifier GOOD
JOB!

» Encoding accurate structure, partial
semantics

Syscall Description Language: Syzlang

esource sock[fd]
resourcd sock_in[soc

doma ir{const[AF_INET],}t ypefflags[socket_type], Jorotoint32) sock_in

accept$inet(rdsock_in, peer ptrlout, sockaddr_in], peerlen ptrlinout, len[peer, int32]]) sock_in
bind$inet(frdsock_in, addr ptr[in, sockaddr_in], addrlen len[addr])
listen(rdsock, backlogint32)

» Resource Type « Call Specialization

- Value, output from other calls * Specialize partial arguments

- “resource A[B]' => A is subtype of B * Format: call$name

Motivation

Call Combination

For a set of syscalls { Sy, S1, S2, ... Sp }
-
Generate a sequence of calls [Cy, Cy, C,, ...]
-
For sequence [Cy, C;], how to choose the next system call?
-

Random? Optimized strategy?
What is the idea behind the strategy ?

Problem: Countless Call Combinations

Around 400 syscalls in Linux

4000+ specialized syscalls in Syzlang description

Length of generated call sequence is 8~32

Possible number of combinations is ¥324(*%°) ~ 108°

102~103 exec/s, 10%° years for all combinations
Most call sequences are invalid, equivalent

Need better strategy to choose call combination, rather than random.

Choice Table Of Syzkaller

» Each item records the probability that a syscall should be invoked
before another syscall

« Example

B (p0;; *plyj)

» Choose next call based on the probability J 1000
Calculated by an empirical analysis algorithm

« For sequence [(y, ¢;], random choose C; |2
L

Static part p0;; + Dynamic part p1;;

» Hard-coded value for each type t each adjacent calls

Too

. . E
Empirical te sum

* Sum of common type

Observation: Influence Relation

sock_fd = socket (AF_INET, SOCK_STREAM, 0)
‘ Create socket inside the kernel

bind(sock fd, &addr, sizeof (addr)) Former calls setup related kernel states

& Bind address to the socket » The latter calls can be influenced by those states

listen(sock £d, ..) . Exepution path of the latter cgll changed due to
the internal kernel state modified by the former
‘ Mark socket call

accept(sock fd, &peer_ addr, &size)

Influence relations exist between two system calls if the execution of a former can alter
the latter’s execution path.

10

Observation: Guide with Influence Relation

sock_fd = socket (AF_INET, SOCK_STREAM, 0)

J Create socket inside the kernel

bind(sock _fd, &addr, sizeof (addr)) * Some execution paths of one call may only be
executed in certain kernel states

Influence relation exists between calls

‘ Bind address to the socket

listen(sock fd, ..) Insert more system calls that have influence

relations before the target system call so that we
¥ Mark socket can trigger different kernel states and allow each

accept (sock_fd, speer addr, &size) system call to enter deep execution paths

The number of invalid test cases and the size of the search space can be reduced

significantly by taking relations between system calls into consideration.
1

Guide Kernel Fuzzing with Relation Learning
Learn the influence relations dynamically, iteratively

Guide generation and mutation with learned relations

Increase the quality of inputs, speedup the fuzzing process

HEALER: Relation Learning

Relation

A system call C; has an influence on another system call C; if the execution
of C; can mfluence the execution path of C; by modifying the kernel's
mternal state.

* Relation is about influence of execution path
* The reason behind relation is kernel state

13

Static Learning

* Purpose: Learn the relations expressible by Syzlang description.

* Idea: The producer syscall of one resource can influence the consumer
syscall of that resource.

* Steps: two simple rules:

* The return type of C; is a resource type r0, or any parameter in C;
is a pointer of this resource type with an outward data flow
direction

* At least one of C;'s parameters is a resource type 70 or resource

type r1 that is compatible with 70 with an inward data flow
direction

14

Static Learning

socket$inet(domain const[AF_INET], type flags[socket_type], proto int32

bind$inet addr ptr[in, sockaddr_in], addrIen len[addr])

socketpair(domain flags[domain], t ype flags[socket_type], proto int32,[fds ptrlout, sock_pair]i

bind$inet addr ptr[in, sockaddr_in], addrIen len[addr])

(resource sock_in[sock] |

socket$inet(domain const[AF_INET], type flags[socket_type], protoint32)sock_in
listen{fdsock]backlogint32)

15

Dynamic Learning: Minimization

* Purpose: Only analyze calls that contribute to new coverage.
* Idea: Remove one call as long as the coverage keeps the same.
* Steps: For sequence P and its coverage:

+ Extract the subsequence p' for call Ci that has not yet been included in the other
minimal sequences

* Remove each call ¢’ before Ci in p’
+ If coverage keeps same, commit the change
* Example

* For [memfd_create, write, fcntl, mmap], with [cov0, covl, cov2, cov3], cov3 contains
new coverage

» ‘write'is removed, the final sequence is [memfd_create, fcntl, mmap]

16

Dynamic Learning

* Purpose: Learn the relations not expressible by Syzlang description
* Idea: The relation is all about execution path, observe the coverage change
* Steps: For each adjacent call pair (C;, C;) of the minimized sequence P:

* Remove C;, observe the coverage change of C;

« Ifthe coverage of C; changed, €; must have influence relation with C; , since
they’re adjacent

Learn relations

iteratively

~17

Dynamic Learning

{ 0. memfd_create(name ptrfin, string], flags flags[memfd flags]) fd_memfd

R}

i 1:write(fd fd, buf buffer[in], count len[buf]) @
) / 23

{2 fentISADDSEALS(fd fd, cmd const[F ADD SEALS], seals flags[seal types])

Q Static
Learning
7

Ry <1
Ry, 1 y “ a Learning
3: mmap(addr vma, len len[addr], .., fd fd, offset intptr) ‘

& Dynamic

18

Guided Generation and Mutation

* Purpose: Generate high quality inputs
* Idea: Use learned relations to select call that matters
* Steps: For call sequence [(; , C; , Cyl:

* Find candidate calls that can be influenced by C; , C; , Cy, count
number of calls that influence the candidate as weight.

* Choose weighted
* Example:
* For sequence [socket, bind]
* The candidates are [listen: 2, accept: 1]

* ’listen’ has higher priority to be chosen
19

Revisit the Fuzzing Loop

/ \
: [Kernel] [Sanitizer] !
'__Source Configs |1

M et
iRefine (7 Relation ,- .
Corpus -
Learning %% | Feedback |e= TargetI
Kerne

Call Sequences

1
' [

I . | |
1 ! | |
: I ’ N 1 |
I Syscall | [. | 1 :
. | Description | ! Mutation : :
: : : ‘\ /
1 | |

\

Call Sequence @~~~ ~—-~-—-~-

——— - ———

N - —

Implementation

Our arch: Keep It Simple

ﬂ-lealer \\

T

Job; i \

Job, Shared

Fuzz
Exec Adaptor State
Gen |
Mutation Commang
VM Exec Socket
\ Driver ([Driver /

[Background Asynchronous 10 }-—' = [T;;iz{ Shared Memory

J

Test:Data

Executor

Kernel

* Shared fuzzer states

* Fuzzer runs in host

* Only executor runs in VM
* Shmem based communication

* QEMU ivshm
* Modular Design

21

Implementation

* Implement from scratch

* Written in rust, 16064 loc

 Store relations in high performance "HashMap™ ('Ahash’)

* Leverage 'tokio” to implement background IO

* Read-Write lock & atomic operation, reduce sync overhead

22

Evaluation

Improvement

175000
150000
125000
100000

branches

75000
50000
25000

0

Linux v4.19

- healer
syzkaller
==+ moonshine

8

12 16 20 24
time(hour)

175000
150000
125000
100000
75000
50000
25000
0

branches

Linux v5.4

,#f - healer

i syzkaller
I ==+ moonshine

0 4 8 12 16 20 24

time(hour)

23

Improvement

branches

200000
175000
150000
125000
100000
75000
50000
25000
0

Linux v5.11

- = syzkaller
=+ moonshine

4 8 12 16 20 24
time(hour)

* Syzkaller: +28%, +2.2x
* Moonshine: +21%, +1.8x

* Syzkaller: 18+ bugs
* Moonshine: 15+ bugs

The coverage improvement, bug detection
improvement are obvious.

24

Learned Relations

: openat$kvm

: iocti$KVM_CREATE VM

: iocti$KVM_CREATE VCPU

: iocti$KVM_SET_USER_MEMPRY_REGION

Cs

Cs G Co

: ioctl$KVM_RUN

: iocti$KVM_CREATE_IRQCHIP
: iocti$KVM_ENABLE_CAP_CPU
: iocti$KVM_SET_LAPIC

Cq: Tocti$KVM_IRQ_LINE

Cy: ioctiSKVM_SMI

Cy: ioctiSKVM_SET_GUEST DEBUG S5
P

Long Time Fuzzing

« Experiments
» Fuzzing for 2 weeks, multiple versions, e.g., 4.19, 5.4, 5.6.
* Found 218 bugs in total
+ 33 are previously-unknown
* In practice
» Long time fuzzing in internal server
* Report 20+ bug/week
+ 3~6 confirm/week

26

Long Time Fuzzing

B T L e TL IO TR SR O L O R LR O IO UL ST L os VL ST TRTE RTVR g e

> no fault-injection log was prlnted before the task hang.

OK, then it seems like a big problem. - iyounsmis ssue. piease add i foiowing ag o s commi

> Reported-by: Hao Sun <sunhaa th@gmail com>

Thanks for reporting it

Any workload log from the fuzzer so we 1 [

Given wait_event) in synchronize_rou_expedited(), itis no good to come:
n & rcu context

Matthew Wilcox <willy@infradead.arg>

Or just using the tool? niEE

akpm. linux-mm. linuxkemel =

Y BEE- > PN~ BiF
Tha >> |f you fix this issue, please add the following tag to the commit: INLY_THP_FOR_FS
>> Reported-by: Hao Sun <sunhao.th@gmail.com>
QU - allocated by khugepaged

re's no knowledge of THPS in
- >This is probably a dup, causes skb_expand_head() changes,
> CC Vasily Averin <yvs@uvirtuozzo.com> is currently working on a fix
e. Somebody needs to figure out
split - was this ioctl issued through
Thank you for this report and especially for C reproducer!

Vasily Averin

...ormation.

27

* Integrate to upstream (ClI)
« Implement "hub’ to support fuzzing on multiple hosts
* Reduce the manual efforts of writing syscall description

28

Thank You

