
HEALER: Relation Learning Guided Kernel Fuzzing

Outline

1 Coverage Guided Kernel Fuzzing

2 Motivation

3 Relation Learning

4 Implementation

5 Evaluation

6 Future Work

1

Coverage-Guided Kernel Fuzzing

Fuzzing 101

Source

Code

Coverage

Feedback
Fuzzable

Program

Fuzz Driver

Random

Input

Mutator Select
Corpus

Interesting

Path

Saver

2

Coverage Guided Kernel Fuzzing

3

Kernel
Source

Syscall
Description

Corpus

META

Executor

Target
Kernel

Input

Sanitizer
Configs

Feedback

Mutation

Gen

Refine

Crash
Report

Repro
Prog

Call Sequences

Call Sequence

Coverage Guided Kernel Fuzzing: Input

4

Input

sock_fd = socket(AF_INET, SOCK_STREAM, 0)

bind(sock_fd, &addr, sizeof(addr)

listen(sock_fd, …)

accept(sock_fd, &peer_addr, &size)

• Structure and partial semantic aware

• Setup kernel state

• Reach deep kernel logic

Call Sequence

Syscall Description Language: Syzlang

5

• Rich type, type constructors

• Semantic modifier

• Encoding accurate structure, partial

semantics

resource sock[fd]
resource sock_in[sock]

socket$inet(domain const[AF_INET], type flags[socket_type], proto int32) sock_in
accept$inet(fd sock_in, peer ptr[out, sockaddr_in], peerlen ptr[inout, len[peer, int32]]) sock_in
bind$inet(fd sock_in, addr ptr[in, sockaddr_in], addrlen len[addr])
listen(fd sock, backlog int32)

Syscall Description Language: Syzlang

6

• Resource Type

• Value, output from other calls

• `resource A[B]` => A is subtype of B

resource sock[fd]
resource sock_in[sock]

socket$inet(domain const[AF_INET], type flags[socket_type], proto int32) sock_in
accept$inet(fd sock_in, peer ptr[out, sockaddr_in], peerlen ptr[inout, len[peer, int32]]) sock_in
bind$inet(fd sock_in, addr ptr[in, sockaddr_in], addrlen len[addr])
listen(fd sock, backlog int32)

• Call Specialization

• Specialize partial arguments

• Format: call$name

Motivation

Call Combination

For a set of syscalls { 𝑆0, 𝑆1, 𝑆2, … 𝑆𝑛 }

7

Generate a sequence of calls [𝐶0, 𝐶1, 𝐶2, …]

For sequence [𝐶0, 𝐶1], how to choose the next system call?

Random? Optimized strategy?

What is the idea behind the strategy ?

Problem: Countless Call Combinations

8

• Around 400 syscalls in Linux

• 4000+ specialized syscalls in Syzlang description

• Length of generated call sequence is 8~32

• Possible number of combinations is σ𝑘=8
32 4000

𝑘
≈ 1080

• 102~103 exec/s, 1069 years for all combinations

• Most call sequences are invalid, equivalent

Need better strategy to choose call combination, rather than random.

Choice Table Of Syzkaller

9

• Each item records the probability that a syscall should be invoked

before another syscall

• Example

• For sequence [𝐶0, 𝐶1], random choose 𝐶𝑖

• Choose next call based on the probability

• Calculated by an empirical analysis algorithm

• Static part 𝑝0𝑖𝑗

• Hard-coded value for each type

• Sum of common type

• Dynamic part 𝑝1𝑖𝑗

• Count each adjacent calls

• Calculate sum

𝑃𝑖𝑗 =
𝑝0𝑖𝑗 ∗ 𝑝1𝑖𝑗

1000

Too
Empirical

Observation: Influence Relation

10

listen(sock_fd, …)

• Former calls setup related kernel states

• The latter calls can be influenced by those states

• Execution path of the latter call changed due to

the internal kernel state modified by the former

call

sock_fd = socket(AF_INET, SOCK_STREAM, 0)

bind(sock_fd, &addr, sizeof(addr))

accept(sock_fd, &peer_addr, &size)

Create socket inside the kernel

Bind address to the socket

Mark socket

Influence relations exist between two system calls if the execution of a former can alter
the latter’s execution path.

Observation: Guide with Influence Relation

11

listen(sock_fd, …)

• Influence relation exists between calls

• Some execution paths of one call may only be

executed in certain kernel states

• Insert more system calls that have influence

relations before the target system call so that we

can trigger different kernel states and allow each

system call to enter deep execution paths

sock_fd = socket(AF_INET, SOCK_STREAM, 0)

bind(sock_fd, &addr, sizeof(addr))

accept(sock_fd, &peer_addr, &size)

Create socket inside the kernel

Bind address to the socket

Mark socket

The number of invalid test cases and the size of the search space can be reduced
significantly by taking relations between system calls into consideration.

Our Idea

12

Guide Kernel Fuzzing with Relation Learning

Learn the influence relations dynamically, iteratively

Guide generation and mutation with learned relations

Increase the quality of inputs, speedup the fuzzing process

HEALER: Relation Learning

Definition

13

Relation

A system call 𝐂𝐢 has an influence on another system call 𝐂𝐣 if the execution
of 𝐂𝐢 can influence the execution path of 𝐂𝐣 by modifying the kernel's
internal state.

• Relation is about influence of execution path
• The reason behind relation is kernel state

Static Learning

14

• Purpose: Learn the relations expressible by Syzlang description.

• Idea: The producer syscall of one resource can influence the consumer
syscall of that resource.

• Steps: two simple rules:

• The return type of 𝐶𝑖 is a resource type 𝑟0, or any parameter in 𝐶𝑖
is a pointer of this resource type with an outward data flow
direction

• At least one of 𝐶𝑗′s parameters is a resource type 𝑟0 or resource

type 𝑟1 that is compatible with 𝑟0 with an inward data flow
direction

Static Learning

15

socket$inet(domain const[AF_INET], type flags[socket_type], proto int32) sock_in

bind$inet(fd sock_in, addr ptr[in, sockaddr_in], addrlen len[addr])

socketpair(domain flags[domain], type flags[socket_type], proto int32, fds ptr[out, sock_pair])

bind$inet(fd sock_in, addr ptr[in, sockaddr_in], addrlen len[addr])

resource sock_in[sock]
socket$inet(domain const[AF_INET], type flags[socket_type], proto int32) sock_in
listen(fd sock, backlog int32)

Dynamic Learning: Minimization

16

• Purpose: Only analyze calls that contribute to new coverage.

• Idea: Remove one call as long as the coverage keeps the same.

• Steps: For sequence P and its coverage:

• Extract the subsequence 𝑝′ for call 𝐶𝑖 that has not yet been included in the other

minimal sequences

• Remove each call 𝐶′ before 𝐶𝑖 in 𝑝′

• If coverage keeps same, commit the change

• Example

• For [memfd_create, write, fcntl, mmap], with [cov0, cov1, cov2, cov3], cov3 contains
new coverage

• `write` is removed, the final sequence is [memfd_create, fcntl, mmap]

Dynamic Learning

17

• Purpose: Learn the relations not expressible by Syzlang description

• Idea: The relation is all about execution path, observe the coverage change

• Steps: For each adjacent call pair (𝑪𝒊, 𝑪𝒋) of the minimized sequence P:

• Remove 𝑪𝒊, observe the coverage change of 𝑪𝒋

• If the coverage of 𝑪𝒋 changed, 𝑪𝒊 must have influence relation with 𝑪𝒋 , since

they’re adjacent

Learn relations
iteratively

Dynamic Learning

18

Guided Generation and Mutation

19

• Purpose: Generate high quality inputs

• Idea: Use learned relations to select call that matters

• Steps: For call sequence [𝐶𝑖 , 𝐶𝑗 , 𝐶𝑘]:

• Find candidate calls that can be influenced by 𝐶𝑖 , 𝐶𝑗 , 𝐶𝑘, count

number of calls that influence the candidate as weight.

• Choose weighted

• Example:

• For sequence [socket, bind]

• The candidates are [listen: 2, accept: 1]

• `listen` has higher priority to be chosen

Revisit the Fuzzing Loop

Kernel
Source

Syscall
Description

Corpus

Relation

Executor

Target
Kernel

Input

Sanitizer
Configs

Feedback

Mutation

Gen

Refine

Crash
Report

Repro
Prog

Call Sequences

Call Sequence

Relation
Learning

20

Implementation

Our arch: Keep It Simple

21

• Shared fuzzer states
• Fuzzer runs in host
• Only executor runs in VM

• Shmem based communication
• QEMU ivshm

• Modular Design

Implementation

22

• Implement from scratch
• Written in rust, 16064 loc
• Store relations in high performance `HashMap` (`Ahash`)
• Leverage `tokio` to implement background IO
• Read-Write lock & atomic operation, reduce sync overhead

Evaluation

Improvement

23

Improvement

24

• Syzkaller: +28%, +2.2x
• Moonshine: +21%, +1.8x

• Syzkaller: 18+ bugs
• Moonshine: 15+ bugs

The coverage improvement, bug detection
improvement are obvious.

Learned Relations

25

Long Time Fuzzing

26

• Experiments

• Fuzzing for 2 weeks, multiple versions, e.g., 4.19, 5.4, 5.6.

• Found 218 bugs in total

• 33 are previously-unknown

• In practice

• Long time fuzzing in internal server

• Report 20+ bug/week

• 3~6 confirm/week

Long Time Fuzzing

27

Future Work

28

• Integrate to upstream (CI)

• Implement `hub` to support fuzzing on multiple hosts

• Reduce the manual efforts of writing syscall description

Thank You

