HEALER: Relation Learning Guided Kernel Fuzzing

Hao Sun!, Yuheng Shen!, Cong Wang!, Jianzhong Liu!, Yu Jiang™", Ting Chen™¥#, Aiguo Cui**
KLISS, BNRist, School of Software, Tsinghua University, Beijing, China!
Center for Cybersecurity, University of Electronic Science and Technology of China, Chengdu, China?
Huawei Technologies Co., Ltd, China®

Abstract

Modern operating system kernels are too complex to be free
of bugs. Fuzzing is a promising approach for vulnerability
detection and has been applied to kernel testing. However,
existing work does not consider the influence relations be-
tween system calls when generating and mutating inputs,
resulting in difficulties when trying to reach into the kernel’s
deeper logic effectively.

In this paper, we propose HEALER, a kernel fuzzer that
improves fuzzing’s effectiveness by utilizing system call rela-
tion learning. HEALER learns the influence relations between
system calls by dynamically analyzing minimized test cases.
Then, HEALER utilizes the learned relations to guide input
generation and mutation, which improves the quality of
test cases and the effectiveness of fuzzing. We implemented
HEALER and evaluated its performance on recent versions of
the Linux kernel. Compared to state-of-the-art kernel fuzzers
such as Syzkaller and Moonshine, HEALER improves branch
coverage by 28% and 21%, while achieving a speedup of 2.2x
and 1.8X, respectively. In addition, HEALER detected 218 vul-
nerabilities, 33 of which are previously unknown and have
been confirmed by the corresponding kernel maintainers.

CCS Concepts: « Security and privacy — Operating sys-
tems security.

Keywords: Kernel Fuzzing, System Call Relation Learning.

ACM Reference Format:

Hao Sun!, Yuheng Shen!, Cong Wang?, Jianzhong Liu', Yu Jiang®™!,
Ting Chen™?, Aiguo Cui®. 2021. HEALER: Relation Learning Guided
Kernel Fuzzing. In ACM SIGOPS 28th Symposium on Operating
Systems Principles CD-ROM (SOSP ’21), October 26—29, 2021, Vir-
tual Event, Germany. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3477132.3483547

“Yu Jiang and Ting Chen are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSP °21, October 26-29, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8709-5/21/10...$15.00
https://doi.org/10.1145/3477132.3483547

344

1 Introduction

The robustness of an operating system kernel is crucial for
the overall system’s security. Vulnerabilities of any type,
such as data leaks and data races, would severely impact the
safety of the system and would be catastrophic for user-level
applications if exploited by an attacker. For instance, a data
race that introduces circular lock behavior will render the
kernel unresponsive, and the resulting deadlock may trig-
ger a denial-of-service or a privilege escalation attack [1-3].
However, designing and maintaining kernels are complicated
due to the complexity of modern computer architectures and
the rapid development of new features. Therefore, modern
operating system kernels are too large and too complex to be
free of bugs. The Linux kernel has around 27.8 million lines
of code in its Git repository and has witnessed hundreds of
bugs reported in recent years, proving that hunting for and
fixing kernel bugs are very important.

Traditionally, kernel developers mainly rely on handwrit-
ten test suites such as the Linux-Test-Project [34] to elim-
inate bugs in the kernel. However, manually eliminating
bugs in the kernel with such a huge code-base is challeng-
ing, since it is difficult for handwritten test suites to keep
up with the rapid increase of the kernel’s size and complex-
ity. Fuzzing [4, 12, 31] is a promising vulnerability detec-
tion technique and has been applied to assist kernel testing.
Researchers have developed several kernel fuzzers that fill
system call parameters with random input data to deliver
test payloads to the kernel. This approach has made signif-
icant progress in finding kernel vulnerabilities [6, 17, 28].
However, after the low hanging fruit have been found and
fixed, the effectiveness of these fuzzers decreased because
the generated system call sequences and their parameters
will be mostly likely rejected by parameter validation.

Recent coverage-guided kernel fuzzers [20, 21] have made
further progress. For instance, Syzkaller [36], a state-of-the-
art kernel fuzzer, uses system call descriptions and a choice
table to generate system call sequences. The choice table
records the probability of a system call being invoked be-
fore another to determine the sequence of system calls to
invoke. Syzkaller also uses feedback analysis to refine its
test case corpus iteratively. As a result, Syzkaller has suc-
cessfully discovered numerous kernel vulnerabilities with
the assistance of kernel sanitizers [14, 15]. Another exam-
ple is the tool Moonshine [32], which aims to provide high
quality initial seeds for Syzkaller using a seed distillation

https://doi.org/10.1145/3477132.3483547
https://doi.org/10.1145/3477132.3483547
https://doi.org/10.1145/3477132.3483547
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

algorithm. Moonshine extracts relevant system calls from
existing handwritten test cases based on the system calls’
read-write dependencies. Its generated seeds are used as the
basis for further generation and mutation to produce high
quality inputs and speed up the fuzzing process.

However, existing work does not consider the influence re-
lations between system calls, i.e., the influence of one system
call on the execution behavior of another, when generating
and mutating inputs. The space of possible system call com-
binations is vast, where most combinations are invalid or
equivalent sequences to another. The efficiency of kernel
fuzzers will decrease significantly without employing effec-
tive methods that reduce the search space and increase the
probability of generating valid test cases. Influence relations
exist between two system calls if the execution of a former
can alter the latter’s execution path. For instance, system call
bind can influence the execution path of listen because
bind assigns the address to the socket that 1isten marks as
accepting connections. System call 1isten may return early
with errno EDESTADDRREQ, which indicates the socket has
not been bound to an address without calling bind first. The
basis for determining the system call invocation sequence
is through the influence relations between system calls. By
guiding test case generation and mutation with their rel-
evant influence relations, the quality of test cases and the
efficiency of the kernel fuzzer can be significantly improved.

Although Syzkaller’s system call descriptions express the
resource dependencies between system calls, it mainly con-
veys the structure and partial semantic information of the
system call’s parameters. Syzkaller’s choice table is used
to guide the system call sequence synthesis. Each item of
the choice table is calculated by an empirical analysis algo-
rithm and records the probability value that a system call
should be invoked before another system call. However, each
item in the choice table cannot convey the influence rela-
tion of system calls. We will demonstrate that Syzkaller’s
choice table may even hinder its test case generation and
mutation capabilities in Section 3. Moonshine, on the other
hand, applies static program analysis to infer the system
calls’ read-write dependencies. The inferred dependencies
are then used for seed distillation to provide high-quality
initial seeds for Syzkaller. However, its method does not con-
sider the influence relations when generating and mutating
inputs either.

To address the aforementioned challenges and improve
the efficiency of kernel fuzzing, we propose HEALER, a ker-
nel fuzzer that uses system call relation learning for highly
effective input generation. HEALER borrows from Syzkaller
the system call description format Syzlang to leverage the
structure and semantic information of system calls. Test cases
that trigger new coverage will be minimized so that only
calls which contribute to the new coverage will be analyzed.
These test cases will then be processed by the relation learn-
ing algorithm to infer whether there are influence relations

345

between system calls. The learned relations will be stored
in the relation table, which is refined step by step during
the fuzzing campaign and will be used to guide test case
generation and mutation to ensure that each system call in a
test case is capable of accessing the kernel’s deeper logic. In
contrast to Syzkaller’s choice table, each entry of HEALER’s
relation table represents the influence relation between sys-
tem calls. It is constructed and refined dynamically using
the relation learning algorithm whenever an interesting test
case is discovered. Compared to Moonshine, HEALER contin-
uously learns and updates system call relations throughout
the fuzzing process and applies them to guide the generation
and mutation of high-quality system call sequences.

We implemented HEALER and evaluated its performance
on recent versions of the Linux kernel. Our results show that
HEALER achieves higher coverage than Syzkaller and Moon-
shine by 28% and 21% on average, respectively. Furthermore,
HEALER achieves the same amount of coverage as that of
Syzkaller and Moonshine with a speed-up of 2.2X and 1.8X,
respectively. In addition to coverage improvements, HEALER
found 218 unique vulnerabilities in total, 33 of which were
confirmed as previously unknown. Most of those bugs are
critical vulnerabilities. For instance, an uninitialized read bug
in the function fill_thread_core() in the core dumping
module fs/binfmt_elf.c may have existed in Linux ker-
nel for as long as 12 years and can result in kernel memory
content leakage. The bug has been reported to kernel main-
tainers and relevant patches have been merged upstream.

Our paper makes the following contributions:

e We propose to refine existing fuzzing techniques with
system call relation learning to improve the quality of
generated test cases and maximize program coverage.

e We implement HEALER, consisting of a relation learn-
ing component to initialize and iteratively update the
relation table and a guided system call sequence gen-
eration and mutation component for kernel fuzzing.

e We evaluate HEALER on recent versions of the Linux
kernel. HEALER covers more branches (28%-21%) than
state-of-the-art fuzzers Syzkaller and Moonshine while
being able to achieve equivalent coverage faster (2.2x-
1.8X). HEALER also finds 33 previously unknown bugs,
which have been confirmed by the maintainers.

2 Background and Related Work

Fuzzing is a software testing method that attempts to trigger
bugs by repeatedly feeding a target program with generated
inputs. [4, 5, 11, 13, 25, 27]. It is one of the most effective
approaches for vulnerability detection. Most fuzzing tools
generate interesting test cases with little domain knowledge
or manually constructed inputs, which makes fuzzing more
accessible than other bug-finding methods. Take AFL [39], a
popular user-space program fuzzer, as an example. AFL has
found hundreds of vulnerabilities in widely-used libraries,

while only requiring several input files to bootstrap the
fuzzing process. The input generators of similar fuzzers use
a genetic mutation algorithm that is especially effective in
producing test cases that explore corner cases in program
execution paths, which is difficult for manual testers to per-
form. Many AFL-derived fuzzers have been developed to
perform fuzzing in specialized environments or to improve
its effectiveness [7, 8, 10, 16, 22, 26, 29, 40].

To perform coverage-guided kernel fuzzing, researchers
have ported AFL from user-space to kernel-space by combin-
ing AFL and QEMU’s full-system simulation. QEMU is used
to run the kernel as it runs in privileged mode and requires di-
rect access to the hardware. Then, the fuzzer injects an agent
process to the guest virtual machine. The agent process com-
municates with the outside fuzzer, receives the message sent
from the fuzzer, decodes them into a sequence of system calls,
and issues the system calls to the kernel accordingly. Further-
more, it also performs bookkeeping functions to drive the
fuzzing loop. For instance, KAFL utilizes hardware features in
Intel processors to collect branch coverage information and
extends AFL’s fuzzing techniques with QEMU’s full system
emulation to fuzz kernels [33]. TriforceAFL [18] is a patched
version of AFL that supports full-system fuzzing based on
QEMU. Triforce Linux Syscall Fuzzer [19], which is based on
TriforceAFL, performs kernel fuzz testing by decoding inputs
from AFL and has already found several critical kernel vul-
nerabilities. Furthermore, some kernel fuzzers perform fuzz
testing by directly generating sequences of system calls with
initialized parameter values [9, 23, 24, 30, 35, 38]. After the
execution of generated test cases, the fuzzers analyze the col-
lected execution traces. Test cases that trigger new branches
are saved for additional processing, such as further mutation.
This way, coverage-guided kernel fuzzers can explore kernel
states more efficiently than non-coverage-guided fuzzers.

Google’s Syzkaller is one of the most widely used coverage-
guided kernel fuzzers. Syzkaller generates and mutates test
cases (system call sequences) based on system call descrip-
tions, the corpus and the choice table. It implements a do-
main specific language (Syzlang) to describe the syntax and
partial semantics of system calls, which enables Syzkaller to
start the fuzzing process without any initial input system call
sequences (seeds). Syzlang consists of basic types and type
constructors, e.g., struct, as well as special type modifiers
that provide the semantics of parameters, e.g., resource.
The resource type indicates that the parameter value is ob-
tained from the output of another system call, such as file
descriptors. Syzlang supports resource inheritance. For in-
stance, opening a KVM device to set up virtualization returns
a resource value of KVM type. Since the KVM device type is
a subtype of the file descriptor type, system calls accepting
file descriptors also accept KVM devices. Utilizing Syzlang’s
inheritance capabilities, fuzzers can automatically generate
generic file descriptor system calls such as close after open-
ing a KVM device. In addition, Syzlang supports system call

346

specializations, which instantiates some of the arguments of
the original system call, where the specialized call is named
as original_name$custom. For instance, open$kvm() spe-
cializes the first argument of open() to "/dev/kvm". The
choice table, which records the probability that a call should
be inserted before another call, is used to select target system
calls. Based on the provided information, Syzkaller contin-
uously generates and executes test cases while monitoring
whether the kernel under test crashes. Syzkaller has detected
many critical bugs in the Linux kernel, demonstrating its
ability to find kernel bugs within the upstream Linux ker-
nel [37]. However, the complexity of system calls’ relations
limit Syzkaller’s effectiveness.

3 Motivation

While the Linux kernel defines over 300 system calls, Syzlang
describes nearly 4000 interfaces which contains many spe-
cialized calls. Typically, the length of a system call sequence
generated by a kernel fuzzer ranges from 8 to 32 individ-
ual calls. Therefore, the number of possible call sequences
is Zizzg (4(;30), which is on the order of magnitude of 10%,
without considering the order of calls. Syzkaller can execute
102 to 10° call sequences per second, so it would take nearly
10%? years to run all possible call combinations. Furthermore,
most call combinations are actually invalid and equivalent
with other similar sequences. For instance, if most system
calls in a test case were executed without the required ker-
nel state, then they would most likely exit early, preventing
fuzzers from accessing the kernel’s deeper logic. Therefore,
the efficiency of kernel fuzzers would be significantly limited
without effective methods that reduce the search space and
increase the probability of generating valid test cases.
Operating system kernels are large systems with complex
internal states, which affect the execution paths of system
calls. Almost every system call accesses certain pieces of
kernel data during execution. Different system calls may
influence each other through accessing and modifying com-
mon internal data. At the same time, some calls may not
share any common data with another call entirely, i.e., they
do not affect each other regardless of the current kernel state.
Therefore, the fundamental principle for deciding whether a
system call should be called before another call is the influ-
ence relations between calls. If the execution of C; will affect
the execution path of C;, then C; should have a higher proba-
bility of being executed before C;. On the contrary, if C; has
no effect on the execution of C; (e.g., C; and C; access totally
different internal states), then it is meaningless to execute C;
before C;. Furthermore, some execution paths of one system
call may only be executed in certain kernel states, which
often hide deep and hard-to-find kernel vulnerabilities. The
required kernel states may only be triggered by invoking
specific system calls. Therefore, kernel fuzzers should insert
more system calls that have influence relations before the

target system call, thereby triggering different kernel states
and allowing each system call to enter deep, rare execution
paths. The number of invalid test cases and the size of the
search space can be reduced significantly by taking relations
between system calls into consideration.

Listing 1. Buggy code of kernel routine search_memslots.

—_

struct kvm_memory_slot =
search_memslots(struct kvm_memslots #*slots,
gfn_t gfn)

Do

{

3

4 e

5 // After the loop, start may equal to end
6 while (start < end) {

7 slot = start + (end - start) / 2;

8 if (gfn >= memslots[slot].base_gfn)

9

end = slot;
10 else
11 start = slot + 1;
12 }
13 // FLAW: out-of-bound access
14 if (gfn>=memslots[start].base_gfn &&...){
15
16 }
17 return NULL;
18] }

Take Listing 1 as an example. It shows a piece of vulner-
able code, which is located deep within the kvm module of
the Linux kernel. While invoking the ioctl system call that
starts the kvm, the Linux kernel will find the slot which con-
tains the input gfn through binary search. However, in some
corner cases, the slot index returned by the binary search
may be in an invalid state, resulting in a subsequent out-of-
bounds access. Triggering the aforementioned vulnerability
requires a complex combination of system calls and kernel
states, specifically: the kernel fuzzer needs to open the kvm
file with the correct path, then create a virtual machine in-
stance inside the kernel, configure its virtual processor and
memory information as well as other attributes, and finally
invoke the ioctl system call to run the virtual machine.
Thus, the fuzzer must at least combine system calls as below
(in Syzlang description format):

. open$kvm ,

. 10ct1$KVM_CRATE_VM,

. ioct1$KVM_CREATE_VCPU,

. ioct1$KVM_SET_USER_MEMORY_REGION,
. 1ioct1$KVM_RUN

Gl W N =

to trigger this vulnerability. Being aware of the influence
relations between these system calls (as shown in Figure 5)
during test case generation and mutation will speed up the
discovery of this vulnerability as related calls have a higher
probability to be combined together, otherwise the huge
search space will render fuzzing extremely inefficient.

347

Syzkaller generates test cases based on the system call
descriptions, input corpus and choice table. The choice ta-
ble, which records the probability value that a system call
should be invoked before another system call, guides the
call selection during test case generation and mutation and
plays a significant role in improving the quality of test cases.
Each item of the choice table P;; for system calls C; and C;
is calculated by P;; = (P0;; * P1;;)/1000. The value of P;;
is determined by P0;; and P1;;, which are calculated by the
static and dynamic analysis algorithms respectively. To scale
the values to the same magnitude, both P0;; and P1;; are
normalized to 101000 with a factor of 1000. The static algo-
rithm is based on specific common types between two system
calls. Each common type has a hard-coded weight, e.g., 10
for resource type and 5 for vma type. P0;; is the sum of all
weight value of common types. Based on the input corpus,
the dynamic algorithm counts the adjacent calls in all system
call sequences. The more adjacent calls corresponding to (C;,
C;) occurs, the greater that P1;; will be.

The basis for deciding whether a system call should be
invoked before another system call is the influence relations
as mentioned above. However, Syzkaller’s choice table syn-
thesis algorithm does not conform to these rules. Its static
analysis algorithm tends to assign two calls with more ar-
guments in common to have a greater probability value.
However, the number of common types does not reflect the
influence relations between system calls. Its dynamic anal-
ysis algorithm tends to increase the probability of adjacent
calls in the corpus. However, the continuous call sequence
in the corpus does not necessarily have an influence relation
either. For instance, [C;, C}, C] is the system call sequence
after minimization, but C; may not have an impact on the
execution path of C;. The reason that C; is not deleted by
the minimization algorithm from original sequence is that
C; may set up a specific internal state for Cy. Increasing the
probability of C; and C; (P1;;) will obviously mislead test
case generation and mutation.

Moonshine designed a seed distillation algorithm to pro-
vide initial seeds for Syzkaller. It first uses strace to track the
system call sequences during the execution of existing test
cases. Then, the distillation algorithm uses a static analysis
algorithm to analyze the read-write dependencies of system
calls and filter the collected call sequences with obtained
dependencies. System calls that do not have read-write de-
pendencies with other calls in the sequence will be removed.
It provides high-quality initial seeds effectively. However, the
distillation algorithm is only applied before the fuzzing pro-
cess, thus it does not consider the influence relation between
system calls when generating and mutating test cases.

In order to reduce the search space and improve fuzzing
efficiency, we propose to consider the influence relations be-
tween system calls during test case generation and mutation.
We design a dynamic relation learning algorithm to identify

whether there exists influence relations between any two
calls. The algorithm refines the influence relations by analyz-
ing the sequence of minimized calls during fuzzing. Based
on the relation information, we propose a corresponding
guided generation and mutation algorithm to increase the
probability of system calls executing deep kernel logic.

4 HEALER Design

Figure 1 shows the main components and the overall work-
flow of HEALER. HEALER borrows Syzkaller’s SyzLang de-
scription, which can provide system call information of the
kernel under test, such as the input structure and partial
semantics of the parameters. Based on the given informa-
tion, HEALER can generate system call sequences that satisfy
structural and partial semantic constraints while applying
different mutation operators for each specific type. The in-
put corpus is a set of high-quality test cases consisting of
call sequences accumulated during fuzzing. The user can
optionally provide an initial corpus to help accelerate the

whole process.

Healer

Relation Learning

(Col) =10)
G(.)-on

i Yoo . Lo
.Q Static Learning | i 'é; Dynamic Learning;

System call
Description

§P0{50,01.Cz}
{Pi{ca,c1,C4} |
|)

Corpus

Test Case | Tcoverage

Y 7 ;
<l Kernel J
J 4 J

[Executor

Figure 1. Overview of HEALER. System call descriptions con-
tain existing system call information. The relation learning
module analyzes the minimized test cases, and refines the
relation table during fuzzing. At the same time, guided gener-
ation and mutation module generates system call sequences
based on the learned relations.

The major improvement of HEALER over the state-of-the-
art is that HEALER uses a relation table to guide generation
and mutation. The relation table records the influence re-
lations between system calls. HEALER continuously updates
and refines the relation table using the learning algorithm.
Based on the relation table, HEALER can increase the proba-
bility of the tested system calls reaching deep kernel logic,
thereby improving the effectiveness of fuzzing. HEALER’s ex-
ecutor will then execute the generated test cases and monitor
the fuzzing process to detect whether the kernel under test
has crashed. If so, HEALER will collect and parse the crash log,
such as symbolizing kernel addresses and filtering out irrele-
vant information. HEALER’s crash reproduction component

348

will try to extract the smallest test case that can trigger the
crash based on the execution trace and provide a correspond-
ing minimized system call sequence; if the kernel finishes ex-
ecution without crashing, HEALER will collect and analyze its
branch coverage feedback. If a test case achieves new branch
coverage, HEALER will minimize the test case and learn the
influence relations between the calls in the minimized test
case, subsequently saving information in the relation table
using the relation learning algorithm. The learned relations
will be used for improving test case generation and mutation.

4.1 Relation Learning

We propose an effective relation learning algorithm so that
the fuzzer is aware of the relationships between system calls.
We define influence relations in HEALER as follows:

Definition 4.1 (Influence Relation). A system call C; has
an influence on another system call C; if the execution of
C; can influence the execution path of C; by modifying the
kernel’s internal state.

Relations between system calls refers specifically to the
effect of one call on the execution path of another call. The
reason for the influence is that the current call modifies the
global state on which the other call’s execution behavior
depends. The static and dynamic relation learning algorithm
intends to identify whether such an influence relation exists
between any two system calls.

Relation Table. The relation table is a two-dimensional
table R™" that is used to record the influence relations for
any n system calls. The value R;; in the table R™" is 1, if
system call C; has an impact on C;’s execution trace, whereas
0 represents the opposite situation. At the beginning of
the fuzzing process, the fuzzer may not be aware of most
influence relations due to a limited amount of initial test
cases. We set the table entries of unknown relations to zero.
For instance, the influence relation between the system call
fcnt1$ADD_SEALS and mmap as shown in Figure 2 may be
unknown initially, thus Ry3 and Rs; are set to 0.

[0: memfd_create(name ptrfin, string), flags flagsimemfd_flags]) fd_memfd |

Q Static | 1: write(fd fd, buf bufferfin], count len[buf])
Learning 4

Ryy <1
Ropz <1

_types])
g & Dynamic
. 1'% Learning

Figure 2. An example of relation learning. With the static
part of algorithm, HEALER can infer R;y and Ry equal to 1.
The relation between fcnt1$ADD_SEALS and mmap can be
identified through dynamic analysis during fuzzing.

' 2: fentI$ADDSEALS(fd fd, cmd const[F_ADD_SEALS), seals

‘ 3: mmap(addr vma, len len[addr], ..., fd fd, offset intptr)

Overall, the relation learning algorithm is divided into
the static and dynamic learning routines. The static routine
identifies influence relations based on the input parameter

types and return types of system calls. The dynamic rou-
tine can find influence relations not expressible by system
call descriptions. The algorithm first minimizes the system
call sequences, then executes the minimized sequence to
obtain the coverage feedback for individual system call, and
finally analyze the corresponding feedback to determine the
influence relations.

Static Learning. The static learning routine initializes the
relation table based on the information provided by Syzlang
descriptions. Parameter types are essential for system call
relation identification. Consider the impact of system call
C; on another system call C;. We determine that C; has an
impact on Cj, thus R;; = 1, when the following conditions
are satisfied: (1) the return type of C; is a resource type ry,
or any parameter in C; is a pointer of this resource type
with an outward data flow direction, and (2) at least one of
C;’s parameters is a resource type ry or resource type r; that
is compatible with 7y with an inward data flow direction.
Syzlang supports inheritance between resource types with
the following rules. If ry inherits from rg, then ry is com-
patible with r; and r; is the subtype of ry. These derivation
rules take inheritance relationships between resource types
into account. As Figure 2 shows, memfd_create() influences
write (Ryp < 1) because write() takes fd as a parameter
from memfd_create. Since the parameter fd is resource type
and fcnt1$ADD_SEALS takes it from memfd_create, we can
infer that Ry, should also be 1.

Dynamic Learning. While the static learning routine of
the relation learning algorithm allows for accurate analysis
of influence relations expressible by system call descriptions,
the dynamic learning component continuously updates and
refines the relation table with information not expressible by
the descriptions so that HEALER is able to generate high qual-
ity test cases. Specifically, instead of viewing the system call
sequence as a whole like conventional fuzzers, HEALER indi-
vidually collects coverage for each call in the sequence and
stores the sequence of identifiers denoting the triggered basic
block or edge to discover the coverage changes. Whenever
a test case achieves new coverage, HEALER tries to extract
as much information from it as possible using the following
procedure. First, the relation learning algorithm performs
minimization to obtain a smallest possible test case that
exhibits the same coverage behavior. The purpose of this
step is to filter out system calls that do not contribute to
the new coverage and improve the efficiency of the analysis
procedure. After minimization, the algorithm will gradually
remove each call in the minimized call sequence and analyze
the impact of each removal operation on adjacent calls to
identify the influence relation.

Algorithm 1 shows the procedure of sequence minimiza-
tion. The inputs to the minimization algorithm are test cases
consisting of system call sequences p and the list of new
coverage achieved by each call of p. The coverage is used to
determine whether each removal operation allows the test

349

case to preserve its new coverage. The algorithm extracts
the subsequence p’ for each call C; that has not yet been in-
cluded in the other minimal sequences and has triggered new
coverage in reverse order (Lines 3-7). This ensures that the
resulting subsequences are independent and non-repetitive.
The algorithm then attempts to remove each call C’ before
C; in p’ (Lines 9-10). If the removal does not affect the ex-
ecution path of C;, then p’ is successfully minimized once
(Lines 13-14); otherwise it means that C’ cannot be removed
and is therefore retained (Lines 15-17).

Take Figure 2 as an example, HEALER collects the cover-
age of [memfd_create, write, fcnt1$ADDSEALS, mmap] as
[covg, covy, covy, cous]. Suppose covs contains new cover-
age. After the iteration of Algorithm 1, system call write is
removed because it does not contribute to the new cover-
age of cous. In contrast, memfd_create and fcnt1$ADDSEALS
are preserved and the minimized sequence [memfd_create,
fcnt1$ADDSEALS, mmap] is returned.

Algorithm 1: Sequence Minimization

Input: sequence p, coverage of each call couvs
Output: minimized sequences P

1 P «— empty-list

2 R «— empty-list // indexs of reserved calls

3 fori= (len(p) —1) - 0do

4 if i € R oris_empty(cov[i]) then

5 L continue

6 R « append(R, i)

7 p—plO:i+1]

8 last « i

9 forj=(i—1) > 0do

p” « remove(p’, j)

last « last — 1

couvs’ «— exec(p”)

if couvs’[last] = cous[i] then
| e

else

L R «— append(R, j)

last « last +1
| P« append(P,p’)

10
11
12
13
14
15
16
17

18

Algorithm 2 shows the overall procedure of dynamic learn-
ing. First, the test case p is minimized to P (Line 1). For each
system call C; in p” except for the first one (Line 4), suppose
the previous call of C; is C; (Line 5), if the relation between C;
and C; is unknown (Line 6), then we remove C; from p’ (Line
7) and execute the modified test case (Line 8). If the coverage
under the modified test case changes, then we determine that
C; has an impact on the execution of C;, thus R;; is set to 1
(Lines 9-10). For instance, suppose [Cy, C1, C2] is a minimized
call sequence, if the removal of C; changes the coverage of Cs,

then C; must have an impact on C,. However, if the removal
of C results in the coverage change of Cy, it is possible that
it is caused by the coverage change of C; indirectly. There-
fore, the algorithm only analyzes consecutive calls because
coverage changes that are caused by non-consecutive calls’
removals cannot demonstrate the influence relations.

Algorithm 2: Relation Learning

Input: call sequence p
Output: updated relation table R,,
// minimize p first
1 P « minimize(p)
2 for p’ € Pdo
3 forc; € p’ do
if ¢;! = first(p’) then
c; < previous(p’,c;)
if Rl] =0 then
p” « remove(p’, c;)
cov «— execute(p’’)
if cov of ¢; changed then

[-IE - RS D N,

10

The aforementioned minimized call sequence [memfd_-
create, fcnt1$ADDSEALS, mmap] contains two consecutive
calls. Algorithm 2 will skip the first one ([memfd_create,
fecnt1$ADDSEALS]) because it has already been detected by
the static learning. HEALER can infer that fcnt1$ADD_SEALS
has an impact on mmap, i.e., R3; «— 1, which cannot be deter-
mined by the static learning routine, because the removal
of fent1$ADD_SEALS changes the coverage of mmap. By ana-
lyzing the information provided by the minimized test cases,
HEALER can refine the relation table during the whole fuzzing
process, thereby providing sufficient information for genera-
tion and mutation.

4.2 Guided Generation and Mutation

The learned relations can be utilized in multiple parts of
fuzzing process with different aims depending on the fuzzer
design. In HEALER, relations are mainly used to guide system
call sequence mutation and generation. In general, both mu-
tation and generation are divided into call selection and pa-
rameter synthesis procedures, where call selection adds new
calls to an existing call sequence and parameter synthesis
generates specific values based on the parameter type. Dur-
ing parameter synthesis, HEALER uses similar methods to that
of existing work, designing different generation strategies
and mutation operators for different types of parameters, for
example magic-number-based generation and bit-flip muta-
tion for numerical types. The most significant improvement
over existing work is that HEALER performs call selection
based on the influence relation in the relation table.

350

HEALER performs mutation on existing system call se-
quences in the corpus. These are preserved because of their
ability to trigger new coverage and represent interesting
combinations of system calls. After selecting the mutation
target, HEALER randomly chooses insertion points for new
calls in the target sequence. The sub-sequence preceding
each insertion point is used as the input for call selection
and the mutation module selects the new call for the in-
sertion point using the algorithm as shown in Algorithm 3.
When the gain from mutation decreases, HEALER will try to
generate new system call sequences. The main operation
of generation is sequence synthesis, which chooses a list of
system calls based on the learned relations and their respec-
tive Syzlang descriptions. At the beginning of the genera-
tion process, HEALER mainly considers the producer and con-
sumer of resource types based on the information provided
by the Syzlang descriptions. HEALER randomly combines
producer calls and consumer calls for specific or compati-
ble resources. Subsequently, the generation module uses the
Algorithm 3 multiple times to refine the new call sequence.

Algorithm 3: Guided Call Selection
Input: relation table R,,,, sub-sequence S
Output: selected call C
1 if rand() > a then
2 return random call // randomly select with
probability «

M «— empty —map // construct candidate list
foreach c; € S do

foreach r;; € Ri, do
L if r;j = 1 then

L M[Cj]+ =1
if is_empty(M) then
L return random call

g O G W

L-T-)

else
L return random_weighted(M)

The guided call selection algorithm decides whether to
use the relation table and how to select calls based on the
information it provides. At the beginning of the fuzzing pro-
cess, the relation table may not contain much information,
thus excessive use of the relation table with insufficient in-
formation to guide call selection may lead to a reduction in
test case diversity. On the other hand, the quality of the test
cases cannot be guaranteed without using the learned rela-
tions. Therefore, the algorithm uses a dynamically adjusted
parameter « to strike a balance of whether it should leverage
the relation table information (Lines 1-2). Specifically, the
call selection method of each test case and whether it yields
new coverage are recorded. « is updated to the rate of return

in using the relation table after every 1024 test cases exe-
cuted. Its value increases if more coverage can be obtained
with the use of the learned relations. The algorithm then
determines a list of candidate system calls and the weight
of each candidate call based on the relation table and the
input sub-sequence (Lines 3-7). The candidates are the calls
whose execution paths may be influenced by the calls in
the input sub-sequence S, while the weight is the number
of calls in the sub-sequence that can have an influence on
the corresponding candidate call. Once the information is
collected, the algorithm makes a random selection based on
the weights; a higher the weight corresponds to a higher
probability of being selected (Lines 8-11).

Using the guided generation and mutation, HEALER can
generate test cases using even the most implicit relations
between calls. Each call in a test case has a higher probability
of accessing the deeper logic of the kernel because the call it
depends on has a higher probability of being executed and
the corresponding kernel state has a higher probability of
being set, thus improving kernel fuzzing effectiveness.

5 Implementation

Overall, we implemented HEALER using 14,919 lines of Rust.
In order for the relation learning algorithm to run efficiently,
we designed a fuzzing architecture that is different from
existing state-of-the-art kernel fuzzers. From an architec-
tural view, Syzkaller runs the fuzzer and executor inside the
kernel under test which is executed in a virtual machine,
then synchronizes the state of the different fuzzers via RPC
and monitors the virtual machines via an external manager.
This architecture incurs significant additional IO overheads.
A complex state synchronization mechanism would be re-
quired with the increase of the fuzzer’s design complexity,
as the fuzzing state is scattered across the VMs.

ﬂlealer

[Background Asynchronous |0]'»-* Rl g‘:i;»l Shared Memory
L

Job; v \ TestData
Jobg

Exec Adaptor
Gen -
Mutation
VM Exec
\ Driver Driver

Figure 3. Architecture of HEALER

Shared
Fuzz
State

Qemu,

¢ Executor
| Sommand
Socket

Kernel

To address these issues and improve relation learning ef-
ficiency, HEALER uses a different architecture, as shown in
Figure 3. The core runtime components of HEALER are the
worker threads (Job;), the background IO thread, fuzzing
shared state, the QEMU instances and the executor. The
worker threads perform the entire fuzzing process, which
runs on the host kernel rather than the kernel under test. Dif-
ferent worker threads synchronize directly with each other

351

via the shared fuzzing state. Only the executor runs the gen-
erated system call sequences inside the kernel under test. The
adapter layer of worker thread defines the execution inter-
face, combines the implementations of underlying modules,
which manage the VM and communicate with the specific
executors. We implement a high performance background
asynchronous I0 worker, which monitors and collects log
data from multiple QEMU instances. Commands and status
data, such as handshake packets, are exchanged between the
executor and fuzzer via a control socket. Leveraging QEMU’s
Inter-VM Shared Memory device (ivshmem), the executor
uses the shared memory with the fuzzer by accessing the
emulated PCI device, where new test cases will be serialized
into a compact internal representation. With this framework,
HEALER achieves efficient communication between the fuzzer
and the executor while retaining scalability and eliminating
the need for a corresponding synchronization mechanism
for complex fuzzer designs.

The relation table is implemented with a high performance
hash-table that is shared between different worker threads
and optimized for access speed through read-write lock. The
relation learning algorithm utilizes the capabilities provided
by the execution module for sequence minimization and
dynamic analysis. The static learning routine is implemented
by analyzing the compiler-provided Abstract Syntax Tree
(AST) of the system call description.

6 Evaluation

In this section, we evaluate the effectiveness of HEALER on
recent versions of the Linux kernel. Kernel fuzzers should be
able to cover the execution path of the kernel under test as
much as possible efficiently while triggering as many kernel
vulnerabilities as possible. Therefore, we designed experi-
ments to compare code coverage capabilities and vulnerabil-
ity discovery capabilities with Syzkaller and Moonshine. We
choose Syzkaller because it is the most widely used, effec-
tive and still actively maintained kernel fuzzer. Moonshine
improves Syzkaller’s fuzzing efficiency by performing seed
distillation based on static analysis of read-write dependen-
cies. HEALER guides the generation and mutation based on
dynamic relation learning for a improved efficiency. This
makes the comparison between HEALER and Moonshine’s
distillation process very tempting. In our evaluation, Moon-
shine indicates combining Syzkaller with Moonshine’s dis-
tilled initial seeds. Furthermore, we evaluate the effectiveness
of the relation learning algorithm itself and discuss the im-
pact of relations on the overall fuzzing process. We design
experiments to address the following questions:

e RQ1: How well does HEALER perform compared
to Syzkaller and Moonshine? To answer this ques-
tion, we should evaluate the fuzzers on the amount of
coverage achieved under a fixed time constraint.

Linux v5.11 Linux v5.4 Linux v4.19
200000
o 175000 175000
150000 150000 150000
$ 125000 @ 125000 g 125000
N o . oy
2 100000 S 100000 S 100000
o & o
© 75000 9 75000] o 75000
50000 —— healer 56000 ,#V —— healer 50000 —— healer
syzkaller i syzkaller syzkaller
25000 | — - moonshine 25000 i — - moonshine 25000 — - moonshine
0 0
0 4 8 12 16 20 24 0 0 4 8 12 16 20 24 8 12 16 20 24

time(hour)

time(hour)

time(hour)

Figure 4. Branch coverage growth of HEALER on Linux kernel versions 5.11, 5.4 and 4.19 over 24 hours compared to those of
Syzkaller and Moonshine. In all three kernel versions, HEALER achieves the highest coverage statistics.

e RQ2: How effective is relation learning in assist-
ing test case generation and mutation? Relation
learning is a significant part of HEALER, thus we need
to analyze the impact of the component.

¢ RQ3: How does HEALER perform in vulnerability
detection? The ability to discover bugs should be
demonstrated across more kernel versions when exe-
cuted for an extended period of time.

Experiment Setting. The experiments were conducted
on a server with a 16-core CPU and 32 GiB of memory run-
ning Linux as the host kernel. We chose Linux-5.11, 5.4 and
4.19 as our test kernel targets. Linux 5.11 is the latest ver-
sion prior to submission, whereas Linux 5.4 and Linux 4.19
are the most widely used kernel versions by many distribu-
tions. Each version of the kernel uses the same compilation
configuration, while KCOV and KASAN features are enabled
in order to collect code coverage and detect memory errors.
To evaluate the effectiveness of the relation learning algo-
rithm and exclude the effect of architectural differences on
the experiment results, we designed HEALER-, a special ver-
sion of HEALER that does not use relation learning. Syzkaller,
Moonshine, HEALER- and HEALER are configured with the
same parameters, such as QEMU configurations, system call
descriptions, etc. Specifically, for strict control of computing
resources, we started all experiments simultaneously and
distributed the resources evenly, including 2 cores and 4 GiB
of memory for each virtual machine. All tools use the same
version of the Syzlang description (revision 0085e0). In ad-
dition, Syzkaller, HEALER- and HEALER do not use any initial
seeds, whereas Moonshine uses strong_distill.db as its
seed input, the default configuration used in its paper. To
reduce statistical errors, each set of experiments is repeated
10 times and each experiment is executed over a period of
24 hours. We report the average values of the results.

6.1 Performance of HEALER

In this experiment, we monitor the fuzzing process of Linux
kernel versions 5.11, 5.4 and 4.19 while comparing the code

352

coverage capabilities to those of Syzkaller and Moonshine.
We sample each fuzzer’s statistics each minute in the 24-hour
run. Finally we calculate the average value of each fuzzer’s
sampled data over its 10 executions.

Figure 4 shows the comparison of branch coverage be-
tween HEALER and the comparison fuzzers. As shown in the
figure, HEALER can achieve higher coverage statistics com-
pared to Syzkaller and Moonshine in the same amount of
time. Specifically, all tested tools show significant growth
in the first 8 hours then gradually slow down. Note that at
the beginning of each experiment, the coverage achieved by
HEALER is similar to that achieved by the comparison fuzzers.
This is because at the beginning of each experiment, HEALER
does not have enough information about the relations be-
tween system calls. Once the relation table contains more
information after being continuously refined by HEALER’s
learning algorithm, HEALER’s coverage statistics becomes
significantly better than the comparison fuzzers. At around
16 hours into the experiment, the relative performance of
the tools can be established. Table 1 lists HEALER’s cover-
age improvement statistics over Syzkaller and Moonshine.
Columns “min-impr” and “max-impr” present the minimum
/ maximum coverage improvement among all the experi-
ment rounds. The column “Overall” shows the average cov-
erage improvement. For example, on the version 5.11 kernel,
HEALER achieves 33.00% more branch coverage than Syzkaller
on average. Column “speed-up” presents the average speed-
up of HEALER in achieving the same amount of coverage as
Syzkaller and Moonshine did on each kernel, respectively.

On average, HEALER achieves 28% more branch coverage
than Syzkaller with a 2.2X speed-up on average. Compared to
Moonshine, HEALER achieves 21% more branch coverage with
a speed-up of 1.8x. The increase in coverage statistics proves
that HEALER can explore more code in the Linux kernel than
Syzkaller and Moonshine. The reason for the improvement
is that HEALER is capable of handling the complexity of the
system call relations. Therefore, the call sequences generated

by HEALER would not be rejected early and can be more
effective in exploring code branches.

Table 1. Branch coverage statistics of HEALER compared to
Syzkaller, Moonshine

(a) HEALER vs. Syskaller

Version min-impr max-impr Average Speed-up
5.11 +28% +39% +33% +2.0%
54 +15% +35% +27% +1.9%X
4.19 +17% +28% +22% +2.7X

Overall +20% +34% +28% +2.2X

(b) HEALER vs. Moonshine

Version min-impr max-impr Average Speed-up
5.11 +18% +35% +25% +1.9x
5.4 +17% +27% +25% +1.9x
4.19 +10% +25% +12% +1.8x

Overall +15% +29% +21% +1.8x

6.2 Effectiveness of Relation Learning

In order to evaluate the effectiveness of HEALER’s relation
learning algorithm and exclude the effect of architectural
differences, we compared the performance of HEALER with
HEALER- and collected the learned relations during each
round of experiments.

Table 2 shows the detailed statistics of coverage improve-
ment. We can see that HEALER achieves 34% more branch
coverage than HEALER- with a 2.4X speed up. HEALER out-
performs HEALER-, Syzkaller, Moonshine by 34%, 28%, 21%,
respectively. Since the only difference between HEALER
and HEALER- is whether it leverages relation learning, we
can deduce that the relation learning algorithm is the main
reason for the improvements, rather than architectural dif-
ferences. This experiment result also demonstrates that re-
lation learning’s benefits outweigh its potential overheads.
The overhead of the learning algorithm is very low because
overhead of both static learning and dynamic learning are
minimal. For static analysis, it is only executed once upon
HEALER’s initialization. For dynamic analysis, the analysis
process is invoked only when discovering new branches, an
infrequent event. The overhead for each invocation is still
minimal, due to the linear complexity related to system call
length. According to Figure 6, 90% of test cases have less
than 5 system calls, where HEALER can learn the relation in
4 extra executions.

Figure 5 demonstrates the evolution of relations learned
by HEALER in the first three hours of the experiment. We
only list the data in the first three hours as the amount
of relations after three hours is very large and difficult to
visualize. In the first hour of the experiment, the relatively
more explicit relations of system calls were learned first, thus

10

353

forming multiple sub-graphs as shown in the left part of the
Figure 5. As HEALER continues fuzzing, deeper relations were
discovered and the sub-graphs gradually began to connect,
forming the complex graph as shown in the middle and right
parts of the Figure 5. We extract the KVM-related system
calls from each graph and visualize the formation of their
relations in the bottom half of the figure. With the learned
relations, the bug mentioned in Section 3 can be triggered
efficiently.

Table 2. Branch coverage statistics of HEALER compared to

HEALER-
Version min-impr max-impr Average Speed-up
5.11 +30% +45% +38% +2.5X
5.4 +31% +47% +37% +2.2X
4.19 +20% +35% +27% +2.5X
Overall +28% +43% +34% +2.4X

The Syzlang description (revision 0085e0) contains a total
of 3579 system calls. Note that it contains far more system
calls than there actually are in the Linux kernel, because the
Syzlang description contains a large number of specialized,
customized calls, which HEALER’s relation learning algorithm
supports. Table 3 shows the minimum, maximum and av-
erage number of relations learned by HEALER in 10 rounds
of experiments in each version of the kernel. For instance,
the number of learned relations in 10 rounds of experiments
in Linux-5.11 is distributed between 5901 and 6820, with an
average of 6320. The result is reasonable because most of the
system calls in the Syzlang description are specialized calls
that explicitly belong to a particular module of the kernel,
therefore the graph determined by the influence relations is
overall sparse and locally dense.

Table 3. HEALER’s learned relations count

Version Min Max Average
5.11 5901 6820 6320
5.4 4873 6462 5880
4.19 4890 5829 5434

Overall 5221 6370 5878

To evaluate the correctness of the relation learning algo-
rithm, we examined the learned relations manually. Specif-
ically, we merged the relation data from 10 rounds of ex-
periments within the same version of the kernel. The ex-
periment results from different versions of the kernel need
to be analyzed independently, because of the differences in
the internal implementation. Within each version of data,
we evaluated each learned relation, e.g., C; and Cj, by ex-
ecuting the output test cases that contain C; and C; in the

Cs G Co

Ce
Co C, C, Co G
W 64
G
C.
Cy Cs 3
Cs
Co: openat$kvm C,: iocti$KVM_RUN
C,: iocti$KVM_CREATE VM Cs: iocti$kVM_CREATE_IRQCHIP
C,: iocti$kVM_CREATE_VCPU C: ioctl$KVM_ENABLE_CAP_CPU
Cy: iocti$kVM_SET USER_MEMPRY_REGION C,: ioctl$KVM_SET LAPIC

Cg: iocti$KVM_IRQ_LINE
Cy: iocti$KVM_SMI
Cro: iocti$KVM_SET GUEST DEBUG

Figure 5. The evolution of the relations learned by HEALER in the first three hours. In the first hour of the experiment, the
more obvious relations of system calls are learned first, thus forming multiple sub-graphs. As the fuzzing process continues,
deeper relations are discovered and the sub-graphs gradually begin to connect, forming the complex connected graph. The
bottom half of the figure shows how the relations between KVM related system calls evolves.

corresponding kernel, and checked if C; has influence on
C;’s execution path utilizing gdb remote debugging. The
results of this check showed that all the relations are correct,
a reasonable result given that the relation learning algorithm
is based on dynamic analysis. In principle, the correctness
of the learned relations is ensured by dynamic analysis be-
tween adjacent system calls, which guarantees reliability
and causality, respectively. For example, when removing sys-
tem call open in the sequence [open, read] , the change in
coverage of read can only be attributed to the removal of
its preceding and adjacent call open. The relation table is
constructed iteratively from the aforementioned process, so
it is theoretically correct.

We have shown that the relation learning algorithm plays
a key role in the coverage improvement of HEALER. Here
we discuss the reasons that contribute to HEALER’s improve-
ment over the state-of-the-art. In principle, HEALER uses the
learned relations to guide mutation and generation, even-
tually producing system call sequences. We analyzed the
output corpus of Syzkaller, Moonshine, HEALER- and HEALER,
which consist of all minimized system call sequences. At
the end of each 24-hour experiment, Syzkaller, Moonshine,
HEALER- and HEALER output 6210, 5951, 6894 and 4937 call
sequences on average, respectively.

Figure 6 shows the distribution of the lengths of all mini-
mized sequences in the corpus. The length of the most se-
quences produced by Syzkaller, Moonshine and HEALER- is

11

354

0.6
s mEm healer
o in healer-
iz syzkaller
0.51 mmm moonshine
0.4 0.40
i
|
k<! |
=1
s 0.3 =
0.24 B
0.23
021020 .
0.24 || |
014 =’ = 015 015
|.’ i 2
0.11 I=’ = 007308008 0.08
Il’ i =]
0.020.02
A A A AR

1 2 3 4
Length

5+

Figure 6. Distribution of the lengths of all minimized se-
quences output by each tool.

around 1 or 2. In contrast, HEALER produced a significant
amount of call sequences with lengths greater or equal to 3.
As shown in Figure 6, the number of call sequences that are
longer than 3 in the corpus (generated test cases) of HEALER
(46%) is 2.1 and 1.8 times higher than that of Syzkaller (21%)
and Moonshine (25%), respectively. HEALER outputs 4 times
as many sequences with lengths greater or equal to 5 as
Moonshine and Syzkaller, respectively. Since only system

calls that contribute to new coverage are saved after min-
imization, the longer sequence might contain more types
and combinations of system calls, which indicates more com-
plicated sequences and have a greater probability of reach-
ing deeper into the kernel. Guided by the learned relations,
HEALER’s generation and mutation process produces test
cases with more complex combinations of system calls, thus
it is able to use fewer sequences to achieve deeper coverage
and trigger more vulnerabilities, which also explains the
coverage improvement.

6.3 Bug Detection Capabilities of HEALER

To evaluate HEALER’s vulnerability detection capabilities, we
collected and compared the collected vulnerability data re-
ported by Syzkaller, Moonshine, HEALER- and HEALER in the
10 rounds of experiments over 24 hours in each version of
the Linux kernel. Over a 24-hour period, the four experi-
ment subjects found a total of 35 vulnerabilities in the three
versions of the Linux kernel, of which HEALER found 32,
whereas Moonshine, Syzkaller and HEALER- found 20, 17 and
10, respectively. Note that all the 35 vulnerabilities in this
24-hour experiment are previously-known. Moonshine and
Syzkaller found 3 vulnerabilities in total that HEALER did not
find, because these 3 vulnerabilities require specific execu-
tor features that HEALER currently does not support, such as
USB emulation. HEALER found 15, 18 and 22 vulnerabilities on
each kernel version, respectively, that Moonshine, Syzkaller
and HEALER- did not find. Table 4 lists the vulnerabilities not
reported by either Syzkaller, Moonshine, or HEALER-. The
column “Length to Reproduce” presents the length of the
system call sequences required to reproduce the vulnerabili-
ties. Most of these vulnerabilities require a combination of
5 or more calls to be reproduced, so Moonshine, Syzkaller
and HEALER- were not able to find them efficiently. Those
vulnerabilities cannot be detected by Syzkaller and Moon-
shine because they are related to the internal state of kernel,
which can only be triggered by some relation-aware system
call sequences with proper parameters.

Furthermore, we tested HEALER on more versions of the
Linux kernel, including 4.19, 5.0, 5.4, 5.6, and 5.11. We found
218 unique vulnerabilities over a period of 2 weeks, 33 of
which are confirmed by corresponding maintainers as pre-
viously unknown bugs. Table 5 lists the details of those
previously unknown bugs. Among them, Syzkaller had re-
ported two similar vulnerabilities, cma_cancel_operation
and rdma_listen over a year ago, where the correspond-
ing fixing patches were added and merged into the kernel
upstream at that time. Since then, Syzkaller has been un-
able to trigger these two vulnerabilities, thus the commu-
nity believed that the bugs were properly fixed. However,
in our experiments, these two vulnerabilities were repro-
duced by HEALER with more complex system call combina-
tions, which demonstrates HEALER’s effectiveness in detect-
ing deeply-hidden vulnerabilities. We analyzed the property

12

355

Table 4. Vulnerabilities found by HEALER while missed by
Syzkaller, Moonshine and HEALER- in the 24h experiment.
The column “Length” presents the length of system call se-
quence required to reproduce the vulnerability.

Vulnerability Version Length
deadlock in console_unlock 5.11 18
null-ptr-deref in put_device 5.11 8
refcount bug in 12cap_chan_put 5.11 7
null-ptr-deref nbd_disconnect_and_put 5.11 6
kernel bug in ioremap_page_range 5.11 6
null-ptr-deref in kvm_hv_irq_routing_update 5.11 6
null-ptr-deref in ieee802154_llsec_parse_key_id 5.11 5
out-of-bounds read in bit_putcs 5.4 8
kernel bug in tpk_write 5.4 6
null-ptr-deref nl802154_del_llsec_key 5.4 5
null-ptr-deref in llcp_sock_getname 5.4 5
null-ptr-deref in vivid_stop_generating_vid_cap 4.19 10
kernel bug in bitfill_aligned 4.19 9
out-of-bounds in fbcon_get_font 4.19 6
out-of-bounds in ves_write 4.19 5

of 218 unique vulnerabilities, where 44.4% are memory er-
rors which were detected with the help of KASAN and KMSAN,
25.9% were triggered by assertions indicating kernel logic
bugs, and 11.1% are deadlock or data-race issues which are
detected with the help of KCSAN. Although Syzkaller has been
testing the Linux kernel continuously with large amounts of
computing resources, these 33 vulnerabilities have not been
reported before.

7 Case Studies

Uninitialized memory generally contain junk data with the
contents of stack or heap memory. If the kernel exposes its in-
ternal data through uninitialized memory to an attacker, then
this may lead to more serious consequences. For instance, if
the kernel allocates a block of memory without initialization
and copies that memory block to the user-space program
through operations like copy_to_user, it may cause kernel
information leakage.

With the help of KMSAN, HEALER found uninitialized data
being written to disk when dumping core. On Unix-like op-
erating system kernels, the kernel sends a signal to kill a
process that performed an illegal operation. The default ac-
tion of handling these signals is to terminate a process and
produce a core dump file. During filling thread related infor-
mation of a process (fill_thread_core_info), the Linux
kernel allocates a block of memory without initialization
with length size (Line 8 in Listing 2). The kernel fills the
information of current process piece by piece (Lines 8 to 10
in Listing 2). However, some fields may not be written into
the allocated memory (Lines 10 to 13 in Listing 2), which

Table 5. 33 previously unknown vulnerabilities detected by HEALER.

)) Version
Subsystem Operations Risk Introduced
Ext4 ext4_mark_iloc_dirty / jbd2_journal_commit_transaction data race 5.11
Ext4 __jbd2_journal_file_buffer / jbd2_journal_dirty_metadata data race 5.11
Ext4 __ext4_handle_dirty_metadata / jbd2_journal_commit_transaction data race 5.11
Ext4 ext4 fc_commit / ext4_fc_commit data race 5.11
VES __fput/ ep_remove data race 5.11
Network €1000_clean / e1000_xmit_frame data race 5.11
VFS cdev_del refcount bug 5.11
Rdma cma_cancel_operation use after free 5.11
Network macvlan_broadcast use after free 5.11
Rdma rdma_listen use after free 5.11
Network ieee802154 tx use after free 5.11
Network __qdisc_calculate_pkt_len out of bounds 5.11
TTY n_tty_open paging fault 5.11
Network __build_skb paging fault 5.11
KVM kvm_vm_ioctl_unregister_coalesced_mmio general protection fault 5.11
Block blk_add_partitions paging fault 5.11
KVM kvm_io_bus_unregister_dev memory leak 5.11
10-uring io_uring_cancel_task_requests null-ptr-deref 5.11
TTY gsmld_attach_gsm null-ptr-deref 5.11
VES drop_nlink / generic_fillattr data race 5.6
KVM kvm_gfn_to_hva_cache_init out of bounds 5.6
NFS nfs23_parse_monolithic memory leak 5.6
Network rxrpc_lookup_local memory leak 5.6
VFS fill_thread_core_info uninit value 5.6
Network rds_ib_add_conn null-ptr-deref 5.6
TTY ves_scr_readw out of bounds 5.0
TTY n_tty_receive_buf_common use after free 5.0
Video soft_cursor out of bounds 5.0
VFS io_submit_one deadlock 5.0
VFS free_ioctx_users deadlock 5.0
Video fb_var_to_videomode divide error 4.19
VFS fs_reclaim_acquire inconsistent lock state 4.19
Reiserfs reiserfs_fill_super kernel bug 4.19

leaves that part uninitialized. As a result, several kilobytes
of kmalloc’ed memory may be written to the core dump
file and then read by a non-privileged user, which can be an
easy way of exposing quite a large amount of kernel memory
contents. This vulnerability may have existed for 12 years.
Listing 2 shows the source of uninitialized memory.

HEALER can find this vulnerability since it can generate
test cases with adequate amounts of randomness in addi-
tion to test cases of high quality. The generated use case
with fault injection causes the kernel to kill the executor
process, after which the kernel enters the core dump process,
which directly leads KMSAN to capture the aforementioned
uninitialized memory error.

13

356

8 Discussion and Limitations

We have demonstrated the effectiveness of HEALER. In this
section, we describe some of the limitations of our current
implementation and potential solutions.

The use of system call descriptions to guide mutation and
generation can improve the quality of the generated test
cases, as the correctness of structure and partial semantics
of the parameters can be guaranteed. However, the descrip-
tions themselves are in most cases written by kernel experts,
which increases the cost of manual labor significantly, while
the correctness and completeness of the descriptions can
not be fully guaranteed either. In order to reduce the cost of
writing descriptions, HEALER reuses the existing descriptions

Listing 2. Code that creates the uninitialized memory

1| static int fill_thread_core_info(struct
elf_thread_core_info *t, ...)

2| {

3 if(...) {

4 int ret;

5 size_t size = regset_size(t->task,regset);

6 // uninitialized memory created here

7 void *data=kmalloc(size, GFP_KERNEL);

8 ..

9 if(...){

10 // uninitialized memory stored out here

11 fill_note (&t->notes[i], ..., data);

12 }

13 }

14| }

of Syzkaller. However, the effect to write Syzlang descrip-
tions still need to be further reduced. One possible solution
is to automatically convert the definitions in the C header
files into Syzlang descriptions,. The primary goal of the
converter is to preserve the original structural definition.
To add more semantic information, manually modifying the
translated description is necessary.

9 Conclusion

In this paper, we present HEALER to overcome one of the core
challenges in kernel fuzz testing: the complexity of system
calls’ relations. First, we propose an effective relation learn-
ing algorithm so that HEALER can continuously collect the
relations between system calls during fuzzing. Then, HEALER
leverages the learned relations to guide the system call se-
quence generation and mutation process for vulnerability
detection. We evaluate the effectiveness of HEALER on recent
Linux kernels. Compared to state-of-the-art fuzzers such as
Syzkaller and Moonshine, HEALER improves branch cover-
age by 28% and 21% and improves fuzzing efficiency by 2.2x
and 1.8% to reach the same amount of coverage, respectively.
Furthermore, HEALER successfully detects 33 previously un-
known vulnerabilities, which have been confirmed by the
corresponding maintainers. These results demonstrate that
relations between system calls play a significant role in gen-
erating and mutating high-quality test cases.

10 Acknowledgment

We sincerely appreciate the shepherding from Taesoo Kim.
We would like to express our deep gratitude to Mingzhe
Wang and Jie Liang for their help on this work. We would
also like to thank the anonymous reviewers for their valuable
comments and input to improve our paper. This research
is sponsored in part by the NSFC Program (No. 62022046,
U1911401), National Key Research and Development Project
(Grant No. 2019YFB1706203), the Huawei-Tsinghua Trust-
worthy Research Project (No. 20192000794).

14

357

References

[1] CVE-2016-8655. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2016-8655, 2016.
CVE-2017-17712. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-17712, 2017.
CVE-2017-2636. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-2636, 2017.
Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In David Evans, Tal Maklin,
and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 2329-2344,
United States of America, 2017. Association for Computing Machinery
(ACM).
M. Béhme, V. Pham, and A. Roychoudhury. Coverage-based greybox
fuzzing as markov chain. IEEE Transactions on Software Engineering,
45(5):489-506, May 2019.
Costin Carabas and Mihai Carabas. Fuzzing the linux kernel. In 2017
Computing Conference, pages 839-843. IEEE, 2017.
Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka: fuzzing deeply
nested branches. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 499-513, 2019.
Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chi-
jin Zhou, Xun Jiao, and Zhuo Su. Enfuzz: Ensemble fuzzing with
seed synchronization among diverse fuzzers. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1967-1983, 2019.
Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: Inter-
face aware fuzzing for kernel drivers. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages
2123-2138, 2017
Ying Fu, Meng Ren, Fuchen Ma, Heyuan Shi, Xin Yang, Yu Jiang,
Huizhong Li, and Xiang Shi. Evinfuzzer: detect evm vulnerabilities
via fuzz testing. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1110-1114. ACM, 2019.
S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. Collafl: Path
sensitive fuzzing. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 679-696, 2018.
[12] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. SIGPLAN Not., 43(6):206—-215, June 2008.
[13] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated
whitebox fuzz testing. In NDSS, volume 8, pages 151-166, 2008.
Google. The kernel address sanitizer. https://www.kernel.org/doc/
html/latest/dev-tools/kasan.html.
Google. The kernel concurrency sanitizer. https://www.kernel.org/
doc/html/latest/dev-tools/kcsan.html.
Emre Giiler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz.
Antifuzz: impeding fuzzing audits of binary executables. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1931-1947,
2019.
HyungSeok Han and Sang Kil Cha. Imf: Inferred model-based fuzzer.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2345-2358, 2017.
[18] Jesse Hertz. https://github.com/nccgroup/TriforceAFL, 2016.
[19] Jesse Hertz. https://github.com/nccgroup/TriforceLinuxSyscallFuzzer,
2016.
Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung
Lee, and Insik Shin. Razzer: Finding kernel race bugs through fuzzing.
In IEEE Symposium on Security and Privacy, pages 754-768. IEEE, 2019.
Dave Jones. Trinity: Linux system call fuzzer. https://github.com/
kernelslacker/trinity, 2012.
[22] Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan, Kyu Hyung
Lee, and Taesoo Kim. Fuzzification: anti-fuzzing techniques. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1913-1930,

(2]

E

—

[4

[l

5

—

(6

—

[7

—

8

[t

[9

—

[10]

[11]

[14]
[15]

[16]

[17]

[20]

[21]

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8655
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17712
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2636
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity

[23

[24

[25

[26

[27

[28

[29

(30

[tr}

flans!

[

—

—

—

-

[

2019.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in file systems with an exten-
sible fuzzing framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 147-161, 2019.

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian
Zhang. Fuzzing: State of the art. IEEE Transactions on Reliability,
67(3):1199-1218, 2018.

Jie Liang, Yuanliang Chen, Mingzhe Wang, Yu Jiang, Zijiang Yang,
Chengnian Sun, Xun Jiao, and Jiaguang Sun. Engineering a better
fuzzer with synergically integrated optimizations. 30th ISSRE, pages
28-31, 2019.

Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and
Jiaguang Sun. Pafl: extend fuzzing optimizations of single mode to
industrial parallel mode. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 809-814. ACM, 2018.
Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang, and Renwei
Zhang. Fuzz testing in practice: Obstacles and solutions. In 2018
IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 562-566. IEEE, 2018.

Shuaibing Lu, Zhechao Lin, and Ming Zhang. Kernel vulnerability
analysis: A survey. In 2019 IEEE Fourth International Conference on
Data Science in Cyberspace (DSC), pages 549-554. IEEE, 2019.
Zhengxiong Luo, Feilong Zuo, Yu Jiang, Jian Gao, Xun Jiao, and Ji-
aguang Sun. Polar: Function code aware fuzz testing of ics protocol.
ACM Transactions on Embedded Computing Systems (TECS), 18(5s):93,
2019.

Valentin Manes, HyungSeok Han, Choongwoo Han, sang cha, Manuel
Egele, Edward Schwartz, and Maverick Woo. The art, science, and
engineering of fuzzing: A survey. IEEE Transactions on Software Engi-
neering, PP:1-1, 10 2019.

15

358

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

Pedram Amini Michael Sutton, Adam Greene. Fuzzing: Brute Force
Vulnerability Discovery. Pearson Education, 2007.

Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine: Opti-
mizing OS fuzzer seed selection with trace distillation. In 27th USENIX
Security Symposium (USENIX Security 18), pages 729-743, Baltimore,
MD, August 2018. USENIX Association.

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kafl: Hardware-assisted feedback fuzzing
for {OS} kernels. In 26th USENIX Security Symposium (USENIX Security
17), pages 167-182, 2017.

Bull SGI, OSDL. Linux test project. http://linux-test-project.github.io/.
Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi, Xun
Jiao, Houbing Song, Yu Jiang, and Jiaguang Sun. Industry practice
of coverage-guided enterprise linux kernel fuzzing. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 986-995, 2019.

Dmitry Vyukov and Andrey Konovalov. Syzkaller: an unsupervised
coverage-guided kernel fuzzer. https://github.com/google/syzkaller,
2015.

Dmitry Vyukov and Andrey Konovalov. Syzbot. https://syzkaller.
appspot.com/upstream/fixed, 2020.

Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:
Data race fuzzing for kernel file systems. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 1643-1660, 2020.
Michal Zalewski. American fuzzy lop (2.52b).
coredump.cx/afl.

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong
Zhu, and Limin Sun. Firm-afl: high-throughput greybox fuzzing of iot
firmware via augmented process emulation. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1099-1114, 2019.

https://Icamtuf.

http://linux-test-project.github.io/
https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream/fixed
https://syzkaller.appspot.com/upstream/fixed
https://lcamtuf.coredump.cx/afl
https://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Motivation
	4 HEALER Design
	4.1 Relation Learning
	4.2 Guided Generation and Mutation

	5 Implementation
	6 Evaluation
	6.1 Performance of HEALER
	6.2 Effectiveness of Relation Learning
	6.3 Bug Detection Capabilities of HEALER

	7 Case Studies
	8 Discussion and Limitations
	9 Conclusion
	10 Acknowledgment
	References

