
Horus: Accelerating Kernel Fuzzing Through Eficient Host-VM

Memory Access Procedures

JIANZHONG LIU, YUHENG SHEN, YIRU XU, HAO SUN, and YU JIANG∗, Tsinghua University,
China

Kernel fuzzing is an efective technique in operating system vulnerability detection. Fuzzers such as Syzkaller and Moonshine

frequently pass highly structured data between fuzzer processes in guest virtual machines and manager processes in the

host operating system to synchronize fuzzing-relevant data and information. Since the guest virtual machines’ and the host

operating system’s memory spaces are mutually isolated, fuzzers conduct synchronization operations using mechanisms

such as Remote Procedure Calls over TCP/IP networks, incurring signiicant overheads that negatively impact the fuzzer’s

eiciency and efectiveness in increasing code coverage and inding vulnerabilities.

In this paper, we propose Horus, a kernel fuzzing data transfer mechanism that mitigates the aforementioned data transfer

overheads. Horus removes host-VM memory isolation and performs data transfers through copying to and from target

memory locations in the guest virtual machine. Horus facilitates such eicient transfers through using ixed stub structures in

the guest’s memory space, whose addresses, along with the guest’s RAM contents, are exposed to the host during the fuzzer’s

initialization process. When conducting transfers, Horus passes highly-structured non-trivial data between the host and

guest instances through copying the data directly to and from the stub structures, reducing the overall overhead signicantly

compared to that of using a network-based approach. We implemented Horus upon state-of-the-art kernel fuzzers Syzkaller ,

Moonshine and kAFL and evaluated its efectiveness. For Syzkaller and Moonshine, Horus increased their transfer speeds

by 84.5% and 85.8% for non-trivial workloads on average and improved their fuzzing throughputs by 31.07% and 30.62%,

respectively. Syzkaller and Moonshine both achieved a coverage speedup of 1.6× through using Horus. For kAFL, Horus

improved speciically its Redqueen component’s execution speeds by 19.4%.

CCS Concepts: · Security and privacy→ Operating systems security; Software and application security.

Additional Key Words and Phrases: kernel fuzzing, testing, security, performance enhancement

1 INTRODUCTION

Fuzzing is a popular program testing technique that has gathered much momentum in both academia and industry

due to its efectiveness and scalability. Since the number of bugs in a project usually grow exponentially with

the amount of code, operating system kernels such as Linux, which comprise of code on the scale of several

million lines of code or more, have no shortage of critical vulnerabilities. As kernels execute in the processor’s

privileged mode, triggering any of its bugs can lead to catastrophic results, including loss of data, exposure of

sensitive information, unauthorized code execution, etc. For instance, a recent vulnerability labelled CVE-2021-

42008 [Hutchings 2021] is classiied as Slab-Out-Of-Bounds that can result in kernel memory corruption, and

∗Yu Jiang is the corresponding author

Authors’ address: Jianzhong Liu, liujz21@mails.tsinghua.edu.cn; Yuheng Shen, shenyh20@mails.tsinghua.edu.cn; Yiru Xu, xuyr21@mails.

tsinghua.edu.cn; Hao Sun, sun-h20@mails.tsinghua.edu.cn; Yu Jiang, jiangyu198964@126.com, School of Software, Tsinghua University, 30

Shuangqing Road, Haidian District, Beijing, 100084, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2023/8-ART $15.00

https://doi.org/10.1145/3611665

ACM Trans. Softw. Eng. Methodol.

HTTPS://ORCID.ORG/0000-0003-3612-4315
HTTPS://ORCID.ORG/0000-0002-2667-5431
HTTPS://ORCID.ORG/0000-0002-9386-1453
HTTPS://ORCID.ORG/0000-0003-2095-092X
HTTPS://ORCID.ORG/0000-0003-0955-503X
https://orcid.org/0000-0003-3612-4315
https://orcid.org/0000-0002-2667-5431
https://orcid.org/0000-0002-9386-1453
https://orcid.org/0000-0003-2095-092X
https://orcid.org/0000-0003-0955-503X
https://doi.org/10.1145/3611665
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611665&domain=pdf&date_stamp=2023-08-08

2 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

when properly exploited it can ultimately result in privilege escalation. Such a vulnerability is not an exception:

there have been numerous kernel vulnerabilities [Deucher 2021; Google 2021a; Lantz 2021] found and exploited

by malicious parties over the past few years. Therefore, it is of paramount importance to extensively study and

develop kernel fuzzing techniques to improve the safety of operating systems and to protect users and the public.

Fundamentally, fuzzers test programs through repeatedly feeding the target program with diferent inputs,

such as raw data bytes, structured objects and network packets, and observing the program’s execution for any

exceptional or faulty behavior. State-of-the-art fuzzers generally employ techniques such as coverage feedback,

input mutation and grammar-based generation to efectively explore the state space and ind bugs on a wide

variety of programs.

Kernel fuzzers generally follow the testing paradigms of userland program fuzzers. Using Syzkaller [Vyukov

2016] as an example, kernel fuzzers generate system call sequences to feed as input into the kernel. Syzkaller

is feedback-driven and employs mutation-based and grammar-based input generation, allowing it to generate

sophisticated system call sequences. While userland fuzzers run in the same machine as its target program, kernel

fuzzers difer in design by runing the target kernels in an emulated environment, such as QEMU [Bellard 2005],

since fully testing kernels requires allowing it to run in the processor’s privileged mode. Therefore, in order

to run multiple fuzzing instances at once and prevent bugs from crashing the fuzzer itself, kernel fuzzers are

generally split into two components, speciically 1) a fuzzing manager running on the host machine with a stable

kernel, and 2) fuzzer instances running on guest virtual machines with target kernels. The manager performs the

following operations: synchronizing global fuzzing statistics and information between all guest fuzzing instances,

bookkeeping global data including overall coverage and new test cases. The fuzzer instances generate (or mutate)

and execute test cases, monitor the target kernel’s execution status during test case execution, and synchronizing

information to and from the manager process. The test cases consist of system call sequences, which are organized

as highly structured data when transferred between the host process and guest instances. Many kernel fuzzers

have followed a similar design path to Syzkaller’s to transfer sophisticated coverage data or test case inputs to

and from the guest instance, such as Moonshine, HEALER, RtKaller, Tardis, etc. kAFL[Schumilo et al. 2017] is

another popular kernel fuzzer optimized towards fuzzing kernels for the x64 architecture. Similar to Syzkaller,

kAFL is designed with the guest kernel running in a QEMU/KVM instance and the manager process residing in

the host operating system, thus it also performs data transfers from the host process to guest instances. What is

diferent, however, is its kernel fuzzing technique, which is similar to that of AFL [lcamtuf 2013], where it feeds

generated inputs as linear bytes into certain kernel bufers and tries to trigger bugs within the kernel itself. Thus,

kAFL’s data transfers are mainly serialized bufers rather than highly structured data, which is easier to handle

compared to Syzkaller-like kernel fuzzers.

These host-guest data transfer characteristics in kernel fuzzers result in the need for data transfer mechanisms,

which can be ineicient depending on its design and implementation. For instance, Syzkaller uses Remote

Procedure Calls (RPCs) [Birrell and Nelson 1984] to invoke speciic functions in the guest fuzzers. Speciically,

Syzkaller’s fuzzer and manager send data into RPC stubs, which in turn converts the data into RPC payloads to

transfer over TCP/IP networks. This method is used for a broad range of functions within Syzkaller , including

the fuzzer sending new inputs to the manager and the manager synchronizing inputs and coverage information

to the individual fuzzer instances. In our preliminary survey, these procedures take roughly more than one-third

of the entire execution time during Syzkaller’s fuzzing campaign, which is signiicant as the amount of time that

system call sequences are executed to actually test the underlying kernel can only account for roughly one-half

of the entire campaign.

We observe that the guest virtual machine’s memory pages physically reside in the host’s memory. However,

the host is barred from accessing the data stored within the guest’s memory pages due to the process isolation

mechanisms in modern systems. Therefore, if we allow the fuzzer and manager instances to communicate and

transfer data through directly accessing data in another instance’s memory space, we can devise methods to

ACM Trans. Softw. Eng. Methodol.

Horus • 3

transfer non-trivial highly-structured data eiciently by leveraging the ability to directly copy the information to

and from exact memory locations in either instance, thus greatly reducing the data transfer overheads.

We use this insight to design Horus, a kernel fuzzing data transfer mechanism that proposes such memory

access procedures in kernel fuzzing, thus providing eicient and consistent data transfers between the two

instances through directly accessing another instance’s memory space. We explain our designs on Syzkaller to

illustrate our approach, since the relevant mechanisms require some modiications to the fuzzer itself. Horus

facilitates eicient data transfers using the following procedures. During the kernel fuzzer’s initialization process,

Horus creates ixed stub structures in the guest fuzzer instance. It generates memory layout descriptions for the

stub structures and registers these structures to the host manager process over RPC. When the fuzzing campaign

is underway, whenever the fuzzer or manager wishes to send highly-structured non-trivial data structures to the

other side, they transfer the data through the stub structures using algorithms designed to conduct eicient and

consistent transfers. Briely speaking, the transfer stubs intercept the original RPC calls and oload the actual

data to transfer stubs. The stubs copy the data structure’s metadata and actual data, including all referenced data,

into the stub structures. Stubs in the destination instance then retrieve the data from these stub structures using

the corresponding layout descriptions.

We implemented prototypes of Horus on kernel fuzzers, including Syzkaller ,Moonshine and kAFL, all popular

kernel fuzzers, and evaluated Horus’s efectiveness in reducing data transfer latency and improving execution

throughput on recent and major versions of the Linux kernel. For Syzkaller and Moonshine, which conducts

structured data transfers during fuzzing, when integrated with Horus, their data transfer latencies decreased

by 84.5% and 85.8% on average while their execution throughputs increased by 31.07% and 30.62% on average,

respectively. Furthermore, Syzkaller and Moonshine’s coverage statistics achieved a speedup of 1.6× and 1.6×,

and improved by 6.9% and 8.2% over 12 hours, respectively. In addition, Syzkaller and Moonshine were able to

ind more bugs in a limited amount of time by using Horus, of which 5 were previously unknown and conirmed

by the kernel maintainers. In kAFL’s instance, Horus increased its Redqueen component’s execution speeds by

19.4%, but does not present a signiicant advantage overall over vanilla kAFL, which is within expectations, as

kAFL mostly only performs linear bufer transfers during execution. Regardless, Horus still demonstrates its

efectiveness to improve fuzzing eiciencies for kernel fuzzers, as many kernel fuzzers conduct data transfers of

non-trivial data structures in methods similar to that of Syzkaller .

In summary, this paper makes the following contributions.

• We identify that host-guest communication and data transfers in state-of-the-art kernel fuzzers incur

signiicant overheads when transferring highly structured data, resulting in reduced performance during

kernel fuzzing.

• We observe that the eiciency of kernel fuzzers can be improved by developing eicient host-VM memory

access procedures, through directly accessing memory located within a virtual machine instance, thus

allowing direct memory access to transfer the relevant data.

• We design and implement Horus, a kernel fuzzing data transfer mechanism that provides eicient data

transfers through eicient data transfer techniques for improved kernel fuzzing performance.

• We demonstrate that Horus can signiicantly improve kernel fuzzers’ execution throughput, speed of

coverage growth, and bug detection, demonstrating that these data transfer procedures can be beneicial

towards a kernel fuzzer’s efectiveness.

• To facilitate open research, we have open-sourced the code for Horus on Github (https://github.com/

Wingtecher-OSLab/Horus).

ACM Trans. Softw. Eng. Methodol.

https://github.com/Wingtecher-OSLab/Horus
https://github.com/Wingtecher-OSLab/Horus

4 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

2 BACKGROUND AND RELATED WORK

2.1 Kernel Fuzzing

Fuzzing is an automated software testing technique irst proposed in 1988 by Miller et al. [Miller 1988] Fuzz

testing programs, a.k.a fuzzers, generally test other programs through repeating the following procedure: 1) it

generates an input using various methods, 2) it feeds the input to the target program, and 3) it monitors the

program for any crashes or exceptional behavior [Serebryany et al. 2012; Serebryany and Iskhodzhanov 2009].

Since its inception, fuzzing has gained much attention from various research ields due to its efectiveness in

discovering concrete bugs [Chen et al. 2019; Gan et al. 2018; Godefroid et al. 2008; Liang et al. 2018, 2022; Wang

et al. 2021; Zheng et al. 2019].

A general rule of thumb in program testing is that the greater the code base, the more bugs the program

contains. Operating system kernels generally have enormous code bases. Linux, for instance, recently reached

27.8 million lines of code. Hence, kernels inevitably contain a plethora of critical vulnerabilities. Many researchers

have attempted to utilize fuzzing for inding kernel bugs, thus improving the kernel’s overall security [Jeong

et al. 2019; Kim et al. 2019; Shen et al. 2021; Shi et al. 2019; Xu et al. 2020]. Generally speaking, fuzzing a kernel

involves the following steps: 1) the fuzzer runs the target kernel within a virtualized or emulated environment; 2)

it feeds the target kernel with generated test cases, usually consisting of system calls sequences; 3) the fuzzer then

leverages kernel feedback information such as coverage to ind bugs and guide further input generation; 4) it

also monitors for any exceptional behavior and reports any crashes found, typically with kernel sanitizers [Elver

2019; Ryabinin 2014].

There have been much efort in designing and improving kernel fuzzers. Using Syzkaller as an example, we

introduce common components and procedures of a typical kernel fuzzer. Syzkaller is a widely-used kernel fuzzer

developed by Google and has excellent vulnerability detection capabilities [Vyukov and Konovalov 2020]. By far,

Syzkaller has successfully discovered thousands of vulnerabilities in a wide range of kernels, including Linux,

Windows, MacOS, etc. Syzkaller at runtime consists of a manager process running in the host machine and fuzzer

instances and executors running in the guest virtual machines, as shown in Figure 1. The manager is responsible

for managing the fuzzing campaign, analyzing exceptions, reproducing crashes and logging fuzzing stats, etc.

Fuzzer instances are spawned by the manager and perform test case generation, mutation, feedback analysis and

sending test cases to the executor for testing. Executors decode the test cases and perform the system calls with

the corresponding arguments. It also collects coverage information and sends it back to the fuzzer for further

analysis.

On the input generation side, Syzkaller uses system call speciications to generate new test cases. A system call

speciication consists of a set of system call abstractions, where each contains a system call description and the

speciic information of its parameters. Before the fuzzer starts, Syzkaller parses all the system call speciications

written in domain language and translates them into Abstract Syntax Tree (AST) representations. Fuzzers generate

system call sequences also in AST format that are then packed into binary format and forwarded to the executor.

Meanwhile, each fuzzer utilizes a separated thread to poll the manager to receive any new fuzzing-relevant data.

Afterwards, the executor will translate the generated inputs into to actual system calls and execute it. If a test

case triggers a crash or inds any new coverage, the fuzzer will send this test case back to the manager via RPC

for further test case generation.

Moonshine [Pailoor et al. 2018] is an efective kernel fuzzer built on top of Syzkaller . It’s advantage over

Syzkaller is by proposing a distillation algorithm, which traces and further distills actual execution traces of

real-world applications to obtain a set of system call sequences that allows the fuzzer to initialize with a rich

corpus, thus speeding up the fuzzing process. Therefore, it can generate high-quality test case and cover more

kernel code more eiciently. Healer [Sun et al. 2021] is another promising Syzkaller-like kernel fuzzer that

promotes a relation learning algorithm which dynamically learns relations between system calls over the fuzzing

ACM Trans. Softw. Eng. Methodol.

Horus • 5

Target
Kernel

Corpus

syz-fuzzer

Test
Case

Byte
Array

RPC
Payload

e ecutor

Guest

syz- a ager

Test
Case

Byte
Array

RPC
Payload

RPC
Channel

Host

Fig. 1. Diagram of Syzkaller’s fuzzer instance sending a new test case to the manager process, which consists of the following
six steps: 1○ the test case (a system call sequence) is serialized into a byte representation, 2○ passed to the RPC system as a
payload for the manager process, 3○ sent through the RPC channel via TCP/IP, 4○ received by the manager RPC server,
5○ assembled as the same byte array as in the fuzzer, and finally 6○ deserialized as a fully structured test case. Commonly
used RPC calls include Connect(), which establishes a connection between the manager process and a fuzzer instance;
NewInput(), which the fuzzer process initiates to send the manager a system call sequence that triggers new kernel behavior;
Poll(), which the fuzzer uses to ask the manager for any new inputs or information that the other fuzzer processes may
have contributed; Check(), which the fuzzer uses during initialization to verify the parameters and versions of the testing
harness.

campaign. Using this information, Healer can generate higher-quality test cases therefore achieving higher kernel

code coverage. There have also been works that attempt to automatically generate system call speciications,

such as [Sun et al. 2022], thus relieving kernel developers of the tedious task of crafting detailed speciications.

kAFL [Schumilo et al. 2017] is another kernel fuzzer, which difers from Syzkaller’s approach by utilizing an

AFL-like fuzzing strategy. Speciically, it fuzzes the kernel by delivering generated payloads into certain manually

designated kernel bufers. It uses mutation strategies derived from those initially engineered in AFL, such as

arithmetic operations, bit and byte lips, as well as purely random generations. kAFL’s major advantage lies in its

efective utilization of hardware features in Intel processors such as Intel PT to collect coverage statistics, and thus

minimize the fuzzing overhead to boost the fuzzing eiciency. Due to its design choices, kAFL does not require

sending a highly structured input to and from the guest virtual machine instances, thus potentially lowering the

data transfer overhead during runtime. However, it employs many techniques, such as Redqueen, that requires

fetching a multitude of structured data from the kernel’s runtime image. Redqueen accelerates kAFL’s kernel

coverage through fetching comparison information from the kernel under test, identify the corresponding input

segments to these comparison operands, and guides the fuzzer’s input generation towards directions that can

possibly reach a diferent comparison branch of the conditional jump, thus increasing the fuzzer’s coverage and

potentially triggering new bugs.

ACM Trans. Softw. Eng. Methodol.

6 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

Currently, kAFL is based on the Nyx [Schumilo et al. 2021] backend, which provides the facilities for its

PT-based execution tracing and virtual machine management. Nyx itself is designed towards hypervisor fuzzing

and augments such workloads by allowing for eicient snapshots and recoveries. Many works have been based

on the foundations laid down by kAFL/Nyx, including Redqueen [Aschermann et al. 2019], GRIMORE [Blazytko

et al. 2019], Nyx-net [Schumilo et al. 2022], etc.

In addition, many works aim to improve fuzzing performance by introducing hybrid execution and multi-

threaded execution, like HFL[Kim et al. 2020] and Razzer[Jeong et al. 2019].

2.2 System Emulation

Full system emulation provides a virtual CPU, dedicated memory space and emulated peripherals to provide

kernels and userland programs with a emulated device to run upon. Compared to user mode emulation, it can

fully support running a full-ledged kernel, thus facilitating kernel fuzzing. Popular emulators include QEMU,

Bochs [Mihoka et al. 2008], and VirtualBox [Dash 2013].

Full system emulators can run programs compiled for other architectures by using a technique called dynamic

binary translation. Speciically, the emulator reads binary code intended for another architecture from the target

program, translates it into instructions for the host machine, then executes it to emulate the target program.

In addition, for system emulation, the emulator uses a software memory management unit (SoftMMU), which

manages the entire memory space required by the emulated programs. In detail, the emulator can provide all the

ram and disk memory space for kernels, thus the entire memory space can be accessed through the emulator. For

the emulator, it performs a virtual-to-physical address translation on each memory access operation, allowing

each base block to be indexed by its physical address. Because the emulator provides a relatively independent

runtime environment and memory space, it is ideal for running sophisticated bare-metal systems, like kernels.

Hence many researchers use system emulators to facilitate the kernel’s execution during kernel fuzzing.

2.3 Host-VM Communication

There have been much research in the ield of improving communication eiciencies between the hosts and guest

virtual machines. Such research has resulted in conceiving techniques such as VM-host or inter-VM memory

sharing. For instance, some works have proposed to utilize the guest virtual machines’ network stack, such as

VSock [Garzarella 2020] or character devices such as Virtio [Patni et al. 2015], to facilitate such memory sharing

techniques. These approaches, while being using generalized mechanisms, are not the best solution for sharing

data between fuzzers running in guest virtual machine instances and manager instances. We will delve into the

relevant details in the subsequent sections.

Another such technique is Virtual Machine Introspection (VMI), which allows users to control the virtual

machine’s behavior, as well as access its internal states, including its memory contents. Some kernel fuzzers

and fuzzing techniques, such as Redqueen, utitilze VMI to access the contents of its target kernel and perform

corresponding mutation strategies. However, VMI only provides kernel fuzzers with the means to access the

guest memory region; Horus provides the tools to transfer data eiciently between the host and guest memory

spaces.

3 MOTIVATION

Kernel fuzzers generally rely on traditional remote transmission procedures or virtual machine management

techniques to communicate and transfer data with the guest instances, thus possibly incurring insigniicant

overheads. For example,Syzkaller andMoonshine use Remote Procedure Calls (RPC) over TCP/IP to communicate

and send data between guest fuzzer instances and the host manager to synchronize fuzzing-relevant information,

including new inputs, crash information, runtime statistics, etc. Using Syzkaller as an example, we visualize the

ACM Trans. Softw. Eng. Methodol.

Horus • 7

process of sending a test case from the fuzzer instance running in the VM to the manager instance running in

the host machine in Figure 1. We observe that sending structured data from the guest fuzzer requires invoking

computation and memory-use intensive operations, such as serialization and deserialization, for the data to

be transferred using common methods such as TCP/IP and reach the host manager. Intuitively, using RPC

to transmit data requires highly structured data structures to be encoded and decoded, incurring signiicant

overheads for non-trivial workloads. The data that kernel fuzzers transmit to synchronize relevant information is

highly-structured, i.e. containing many layers of structures, and non-trivial, i.e. containing references to external

data. Therefore, using RPC will only exacerbate the problem. Furthermore, the fuzzer instance runs in a emulator,

thus incurring even more overhead due to the instruction translation and address conversion processes during its

execution. Thus, the less instructions executed during such a data transfer on the guest side, the more eicient

the fuzzing process will become. This issue also afects kernel fuzzers with similar data transfer designs, where

highly-structured non-trivial data is sent between host and guest instances.

Main Loop, 43.76%

RPC Con, 9.99%

Data, 26.39%

Go Runtime, 10.52%

Others, 9.34%

RPC, 36.38%

(a) Performance profiling of Syzkaller’s fuzzer in the guest
VM. Similar to the manager side, the fuzzer also spends a
considerable amount of time on RPC-related events.

Main Loop, 7.33%
RPC Con, 15.83%

Data, 38.19%

Go Runtime, 26.12%

Others, 12.53%

RPC, 54.02%

(b) Performance profiling of Syzkaller’s fuzzingmanager. The
RPC system uses a significant amount of time transmiting
information to and from the respective fuzzers.

Fig. 2. Performance profiling results of Syzkaller’s fuzzing manager and guest fuzzer instances during actual fuzzing scenarios.
The runtime is divided into the following chunks. Main loop: the fuzzer’s main loop performs input mutation and execution,
while the manager’s main loop functionalities are delegated to Goroutines. RPC: execution time proportions of the entire
RPC system, including encoding and decoding arguments (Data) and sending and receiving RPC requests and responses over
TCP/IP (RPC Con.). Go Runtime represents the execution time for Goroutines and its runtime.

To quantitatively understand the severity of this problem, we broke down Syzkaller’s performance metrics

using pprof [Google 2021b]. pprof proiles and reports each component’s proportions of the entire execution

time. As shown in both Figure 2a and Figure 2b, a signiicant proportion of Syzkaller’s fuzzing manager’s and

guest fuzzer’s execution time is spent on RPC calls, thus justifying our concerns. A more detailed investigation

reveals that encoding and decoding highly structured and non-trivial data such as new inputs and coverage are

the root cause of this overhead.

Fuzzers can circumvent these mechanisms by making the kernel fuzzing-aware, i.e. modifying the kernel and

emulator to expose an interface that facilitates direct transfers between the guest fuzzer and the host manager.

However, a general rule of thumb in fuzzing is to avoid modifying the test target if possible to avoid introducing

any new bugs, thus rendering this approach inadvisable. Additionally, these fuzzers can leverage OS-provided

facilities such as the network stack, hardware buses and character devices to perform direct memory accesses.

However, not all operating systems provide such facilities, while adapting such techniques to the respective

operating systems require a non-trivial amount of human labor.

In reality, however, kernel fuzzers are merely processing and moving one memory object to another memory

location, when the guest VM’s pages already reside in the host’s memory space, only that it is isolated by the

host operating system’s virtual memory mechanisms. Therefore, if we can expose the guest VM’s memory to

the host manager, we can perform data transfers between the guest fuzzer and host manager through directly

accessing the other instance’s memory space, thus oloading data movement from RPC calls.

ACM Trans. Softw. Eng. Methodol.

8 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

Horus①
Stu

Guest Fuzz er

Host Manager

Host MeGuest Me

Stu ①Me ory①①
Layout①Descrip o

Stu ①
Structure

Horus①
Stu

Test
Case Corpus

Target
Kernel

Test
Case

RP
C①

Fig. 3. Overall diagram of Horus when adopted to Syzkaller . Stub structures are used to place the relevant data during
inter-memory-space transfers. During Syzkaller’s initialization process,Horus’s fuzzer generates memory layout descriptions
of the stub structures 1○, send the descriptions to the manager 2○ and allow the manager to find the locations of the stub
structures in the guest’s physical memory space 3○ (ğ 4.1). When transferring data from the fuzzer to the manager during
a fuzzing campaign, Horus’s fuzzer-side stubs ofload the relevant data 4○ to the stub structures 5○ while the manager
retrieves the data 6○ and reconstructs the corresponding data structure 7○ (ğ 4.2).

To transfer data eiciently between the host manager and the guest fuzzers, we come across the following

challenges:

1. Accessing data structures in another instance’s memory space correctly. We need some form of description to

ind relevant ields of structured data in a foreign memory space. Then, the host manager can access speciic

parts of the guest’s memory to retrieve and send data to the fuzzer instances. First, we need to expose the guest

instances’ memory into the host’s memory space. Then, the host manager instance needs to understand the

location in the guest instance’s memory of the data being transmitted to read and process the relevant data.

2. Transmitting the data eiciently and consistently to another memory space. Inter-memory-space data movement

poses signiicant challenges towards maintaining the consistency of the target data structures. Speciically,

retrieving data from a foreign memory space requires us to correctly reconstruct all structure entries and

externally referenced data, while transferring data demands that we keep structural pointers and metadata intact

while illing the actual contents. If not addressed adequately, this may result in situations such as loss of data,

invalid pointers, incorrect amount of data transferred, etc. In addition, performance is also a signiicant factor in

our considerations, since ineicient transfer methods will reduce the beneits of such a method.

4 HORUS DESIGN

We design Horus, a kernel fuzzing data transfer mechanism that facilitates eicient and consistent highly

structured data passage between the host manager and guest fuzzers, and improves overall kernel fuzzing

throughput. Horus addresses the aforementioned challenges by removing memory barriers between the host

manager and guest fuzzers and providing resources and methods for eicient memory transfers. Speciically: 1)

we perform modiications to existing tools and propose new primitives that allow the host manager to correctly

ind target data structures within the guest’s memory space; 2) we oload the data transfer functionalities of

ACM Trans. Softw. Eng. Methodol.

Horus • 9

RPC calls to Horus’s stubs by designing algorithms to eiciently and consistently transfer data between the host

manager and guest fuzzers.

We illustrate Horus’s design when implemented for Syzkaller in Figure 3. As shown in the igure, Horus’s

design consists of manager-side and fuzzer-side stubs that transparently transfers the data to and from the relevant

memory regions of ixed stub structures. These stub structures are created during Syzkaller’s initialization process

and persist throughout the entire lifecycle of the virtual machine. As their locations are constant, the fuzzer

sends the relevant descriptions of their layout and locations to the manager process (Section 4.1). Their purpose

is to hold data corresponding to the relevant data structures being transmitted between the fuzzer and manager

during fuzzing, as the manager will understand exactly where to ind the data that it intends to receive or place

the data it wishes to transfer. When the fuzzing campaign is underway, if the fuzzer wishes to pass data to the

manager, such as in cases where the fuzzer sends the manager process new system call sequences that trigger new

kernel behavior, Horus stores these system calls and their relevant data within the corresponding stub structures.

Horus will then send the same RPC call minus the actual data to the manager process to notify the manager

that the transfer of data is ready to commence. Horus’s stubs on the manager side intercept the RPC calls and

transfers the data from the guest instance’s memory space into the manager process’s memory space using the

descriptions sent by the fuzzer instance during initialization. After this is completed, the reconstructed structures

are then returned to the manager for further processing, whereas in the fuzzer instance the RPC call inalizes,

allowing it to continue its fuzzing operations. If the manager wishes to pass information to a fuzzer instance,

instead of the fuzzer process irst placing the data within the stub structures, the RPC call is irst initialized, where

the manager process places the data to be transferred within the guest’s memory space, after which the RPC call

inalizes with the fuzzer instance retrieving the target data from the relevant stub structures (Section 4.2). Though

our description is Syzkaller-oriented, Horus is not restricted to one single fuzzer. Horus can be designed and

implemented on kernel fuzzers that separate their fuzzing logic into distinct parts that run in both the host and

guest operating systems and require transferring highly structured data between the respective instances, such

as Moonshine and Healer. Adapting Horus to other fuzzers will follow a similar approach, including identifying

data transfer entities, using Horus to create stub structures, and devise transfer routines based on the overall

data structure.

4.1 Correctly Finding Inter-Memory-Space Data Structures

Syzkaller’s model of communication between fuzzer and manager instances only consists of data transfer

pathways. Therefore, we can expose each guest virtual machine’s memory space to the manager process, allowing

for direct access to each fuzzer instance’s memory to transmit and receive data requested and sent from the

respective fuzzers.

Since QEMU is widely used to run the fuzzer instances, we modify QEMU’s guest machine RAM allocation

scheme to expose the guest’s memory space to the host machine. Speciically, when QEMU is initializing the

guest machine’s memory, instead of allocating a chunk of memory backed by anonymous pages, we redirect the

allocation to shared memory and place a ile descriptor under the system’s shared memory directory. During

Syzkaller’s initialization process, after successfully booting the guest virtual machine, Syzkaller’s manager maps

its RAM section, backed by shared memory, into its own memory space.

Now that the host manager is able to access the guest fuzzer’s physical memory, we need to inform the host

manager of the source or target data structure’s locations in the guest’s physical memory. The data structures

used in Syzkaller’s synchronization process are highly-structured and non-trivial. We denote highly-structured

to be data structures with multiple levels of hierarchies, while non-trivial data structures are those with external

references, such as pointers pointing to bufers in another memory location. The memory layout description of

these data structures needs to address the following issues.

ACM Trans. Softw. Eng. Methodol.

10 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

First, for highly structured non-trivial data structures, transferring between the fuzzer and manager instances

requires moving and reconstructing not only the structure or array itself, but also all references that the member

values may point to, in addition to ixing the references in the non-trivial data structures for the target memory

space. For instance, the Input struct, deined in the module syzkaller/rpctype, is frequently used in RPC call

transfers to represent a test case. We show its structure in Figure 4, where we see that the member variables

reference other bufers which contain the actual data. Apparently, copying the Input struct itself is insuicient:

we also need to copy the bufers that the ields Name, Prog and Cover point to. Furthermore, we need to ix

the data pointer values so that they are valid in the target address space. Therefore, the description needs to

encompass the memory information of the structure itself and all referenced data structures.

Structure
"Input"

Field: Na e
T pe: String

StringHeader
Data pointer

Len

Data pointer

Len

Cap

"s" " " "z" ...

Byte Buffer

Field: Prog
T pe: B te Sli e

Field: Sig al
T pe: Stru ture

Field: Cover
T pe: uint Sli e Data pointer

Len

Cap

de ad e ...

Byte BufferSliceHeader

ov ov ov ...

uint Buffer

signal.Serial
stru t

Fig. 4. The Input structure, a non-trivial data structure frequently sent in Syzkaller’s RPC calls. The Prog and Cover fields
are Go slices while the Name field is a Go string, all of which maintain a Data pointer pointing to the actual bufer containing
the actual slice or string elements. In order to send the entirety of an Input structure instance to another memory space,
we need to copy not only the structure body itself, but also all bufers its members may refer to, and re-validate the data
pointers for the target address space.

Second, virtually contiguous memory addresses may fragment when translated to physical memory addresses

as a result of the state of the page tables during the instances’ execution. Thus, when constructing memory

layout descriptions for virtually contiguous memory areas, such as bufers, we need to determine, at each page

boundary, the corresponding physical pages and describe the entire area using a sequence of physical pages.

Therefore, we design the following primitives and use them to describe the memory layout information of

any data structure. First, we deine the ContiguousArea structure to describe a contiguous physical memory

area. It consists of two members, a base physical address and the length of the area. A contiguous physical

memory area spanning multiple physical pages can be represented by a single ContiguousArea instance. This is

the most basic building block for more complex structures. Next, we describe a virtually-contiguous memory

chunk as VirtualChunk. VirtualChunk consists of a sequence of ContiguousArea instances, thus representing

virtual memory chunks correspond to one or multiple physical memory areas. Now, we can describe the memory

ACM Trans. Softw. Eng. Methodol.

Horus • 11

layout of structures and arrays. Arrays can be represented simply as a VirtualChunk, since they only consist

of a contiguous memory chunk. Self-contained structures, i.e. structures that have no additional references,

can also be represented using a VirtualChunk instance. Finally, we can describe non-trivial data structures

using combinations of the aforementioned description primitives. Speciically, the description irst contains a

VirtualChunk that describes the memory layout of its own structure body. All referenced data structures can be

represented as instances of the aforementioned primitives, such as member arrays using VirtualChunk instances.

Using the Syzkaller’s Input structure as an example, we briely cover the components of its memory layout

description. First, a VirtualChunk instance StructMem describes the memory location of the struct body. Next,

we use three VirtualChunk instances to describe the memory locations of the individual data bufers of the

member variables Name, Prog and Cover, respectively. Finally, the description for Input contains the description

for the signal.Serial member structure Signal.

Given the complexity of generating such a description, it is not viable to transfer any arbitrary structure on

demand. Doing so would require the fuzzer instance to iterate through the structure itself and all referenced data,

ind the corresponding physical memory areas, and send the description to the manager over RPC calls each time

the fuzzer and manager instances need to transfer data. This can signiicantly reduce the overhead reduction of

using direct memory copying, even when not considering the complexity of the design itself.

Thus, we propose to use ixed stub structures to facilitate data transfers between the fuzzer and manager

instances. These structures are statically allocated during the fuzzer’s initialization process and contain the same

data as the corresponding structures transferred through RPC. This allows the transmitting and receiving end

to know the location to and from which to move data. Therefore, we generate the memory layout descriptions

of these stub structures and notify the manager with their respective descriptions during the fuzzer instance’s

initialization process.

In practice, we ind that Syzkaller most frequently uses the Input and the PollRes structures during RPC

data transfers. The former is described above and the latter is used to transfer synchronized inputs and coverage

information from the host manager to the individual guest fuzzers. Therefore we create ixed stub structure

instances for both structures and implement their respective memory layout descriptions.

4.2 Eficiently and Consistently Transferring Data Structures

During the fuzzer’s execution process, Horus intercepts the RPC calls used to transfer and synchronize data

between the manager and fuzzer instances and oloads the data into Horus’s transfer stubs. These transfer stubs

are present on both fuzzer and manager instances to facilitate the movement of data to and from the respective

stub structures. Since the ixed stub structures reside in the guest’s memory space, the manager needs to map its

data to physical memory locations in order to facilitate transfers. Apparently, the methods for transferring to and

from the stub structures are signiicantly diferent in the fuzzer and manager instances. Therefore, we propose

the following algorithms to transfer data structures across memory space boundaries eiciently and consistently.

Transferring Data to the Manager:When the fuzzer instance transfers data to the manager instance, for

instance when the NewInput() RPC call is invoked to send a new input to the manager, it performs the following

procedure.

For the transfer stub on the fuzzer size, it irst ills the corresponding ixed stub structure with the data it wishes

to transfer through a top-down manner. Speciically, the stub irst assigns all self-contained member variables and

structures without external references, such as integers, boolean values and other nested structures bodies, with

the desired values. Then, for member variables with external references, such as strings, byte arrays and slices of

structures, the fuzzer copies the data in the original target bufers into the ixed stub structure’s corresponding

data bufers. Finally, the fuzzer modiies the length metadata of the stub bufer. Speciically, Go’s slices and strings

are represented at runtime using a *Header structure from the relect module. For instance, headers for string

ACM Trans. Softw. Eng. Methodol.

12 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

Na e

Prog

Sig al

Cover Cover
Buffer

I put
Sig al
Buffer

Prog
Buffer

Na e
Buffer

syz-fuzzer Me ory

Na e

Prog

Sig al

CoverCover
Buffer

I put
Sig al
Buffer

Prog
Buffer

Na e
Buffer

syz- a ager

Fig. 5. Diagram of how the manager uses fixed stub structures’ descriptions to transfer data to and from the fuzzer instance
within the guest VM. The shaded segments in the memory represent the locations of the fixed stub structure in physical
memory. A contiguous virtual memory chunk can consist of multiple physical memory chunks due to how virtual memory is
mapped in the guest VM, as shown by the Prog Bufer and Cover Bufer entries in the Figure.

variables are named StringHeader. This is also present in Figure 4, where the headers for strings and slices

both contain pointers to the actual data bufer, the length of the bufer, and in the case of slices, the capacity

of the bufer. We simply change the length value to modify its metadata. For composite structures or arrays

of non-trivial data structures, the stub will then recursively perform the data transfer on the corresponding

structures.

We illustrate this process in the upper half of Figure 5. To ill the ixed stub structure for Input structures, since

there are none self-contained member variables, the stub irst sets all corresponding metadata values, speciically

the length values for the string Name and slices Prog and Cover. Next, it copies all relevant bufers to the stub’s

corresponding bufers. This concludes the procedures on the fuzzer’s side.

For the manager to recover the structure data, the manager-side stub uses the memory layout descriptions of the

stub structure to identify the locations to read from in a top-down manner. Speciically, the manager irst retrieves

the body of the data structure from the location indicated by its memory layout description, then proceeds to

recursively recreate all its references. The lengths of the slices and strings can be recovered through reading the

header structures in the structure body. When a virtually contiguous memory section in the guest’s memory

space is physically discrete, the manager performs multiple reads from locations indicated by the sequence of

ContiguousArea instances in the corresponding VirtualChunk description.

This process is illustrated in the lower half of Figure 5. To retrieve the Input structure transferred from the

fuzzer instance, the manager irst reads the physical memory chunks that contain the body of the Input stub

structure. Then it allocates bufers to place the contents of the stub’s Name, Prog and Cover bufers. Next, it copies

the contents of the stub bufers into the corresponding bufers allocated in the previous step. Finally, the manager

ixes the data pointers in the member variable’s slice and string headers to produce the target structure.

Transferring Data to the Fuzzer: When the manager sends data to a fuzzer instance, for example when the

manager returns the result of a Poll() RPC request initiated by a fuzzer instance, which contains inputs and

coverage synchronized from other fuzzer instances, the manager performs the following procedure:

ACM Trans. Softw. Eng. Methodol.

Horus • 13

Similar to the aforementioned inverse process, the manager ills the stub structures with the corresponding

data. However, since the stub structure is in the guest VM’s virtual memory space, the manager needs to avoid

modifying Data pointers in the header structures of strings and slices to avoid invalidating the stub structures.

Therefore, the manager performs data transfers recursively using the following procedure. First, the manager

copies the stub structure’s body into its own memory space. Next, it modiies all self-contained variables to the

corresponding values. Then, it sets the length metadata of all member slices and strings by modifying their

respective headers. Finally, it copies the body back to the stub memory locations. The manager then recursively

conducts this procedure on the referenced data structures.

To retrieve the data at the fuzzer side, the fuzzer performs a deep copy of the stub structure, which copies all

structure variables and their referenced objects. This procedure is much more straightforward since the manager

has set the length metadata of slices and strings properly while maintaining the integrity of the pointers of the

actual bufers.

This procedure is also demonstrated in Figure 5 with the low of data reversed. Speciically, the manager irst

assigns the length metadata of all string and slice headers. Then, the manager copies the bufers of the Name,

Prog and Cover variables to the respective physical memory chunks of the stub bufers. Copying a bufer may

require multiple memory copies, since, as explained before, a contiguous virtual memory chunk in the guest VM

may not be physically contiguous. This completes the operations on the manager side. On the fuzzer side, the

fuzzer simply performs a deep copy of the stub’s contents, producing the transferred Input structure.

5 IMPLEMENTATION

Here, we discuss the implementation details regarding Horus’s adaptation Horus to Syzkaller, Moonshine and

kAFL, including relevant details towards the data transfer primitives used, transfer routine implementation and

fuzzer-speciic implementation details.

5.1 Syzkaller and Moonshine

We implemented Horus for Syzkaller and Moonshine. As Moonshine re-uses most of the RPC primitives from

Syzkaller , we implement Horus for both fuzzers using the methods introduced in the previous section. We

modiied the manager and fuzzer’s RPC mechanisms to conduct transfers using Horus’s transfer mechanisms.

Speciically, as aforementioned,Horus intercepts the data transfer process of NewInput and PollRes structures,

as these are the most used during fuzzing. To facilitate Horus’s transfer mechanisms, we inserted interception

routines before the actual RPC invocations in both the manager and fuzzer processes. Speciically, we replaced

relevant RPC calls that contains data sections with ones that exclude the relevant ields. When the fuzzer or

manager process wishes to send an RPC call, Horus ills the ixed stub structures with the relevant data and

invokes the relevant calls. When the receiving side processes this request, instead of extracting the data from the

RPC request itself, it calls the Horus routines to recover the relevant data from the speciied locations.

When allocating ixed stub structures, Go’s memory allocator lazily allocate pages to contain the structures,

i.e. the pages are not allocated immediately and fully, but only when they are irst accessed. Therefore, during the

initialization process, Horus traverses all allocated pages to ensure that they are properly allocated, allowing

both the host and guest to use the memory pages properly.

5.2 kAFL

While as aforementioned, kAFL mainly transfers linear data bufers to kernel bufers in the guest instance, thus

potentially not having an overhead comparable to that of Syzkaller , we also implemented Horus for kAFL to

understand the efects of Horus on these kernel fuzzers. kAFL mainly performs host-VM data transfers in the

following two scenarios. First, the kAFL worker, which is the equivalent of the fuzzer component in Syzkaller ,

ACM Trans. Softw. Eng. Methodol.

14 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

transfers inputs, which are linear byte bufers, to the guest instance’s predetermined byte bufers upon each

execution cycle. In contrast, Syzkaller andMoonshine’s inputs consist of non-trivial, highly structured data, which

encapsulates an entire system call sequence with all argument types and contents. Second, during the Redqueen

stage of a given input seed’s fuzzing process, the worker retrieves comparison information extracted through

hooking to each comparison instruction on the execution trace. It then identiies possible input positions that can

inluence the result of a comparison expression and guide input generation towards reversing the comparsion

result.

In contrast to Syzkaller and Moonshine, where the fuzzer invokes manager routines through the use of RPC

calls, in kAFL, the agent, which executes the payload on behalf of the worker in the target kernel, performs such

duties through the use of hypercalls. Therefore, when adapting Horus to kAFL, the corresponding interception is

performed before and after such hypercalls.

We implement Horus for the aforementioned two scenarios. For the former scenario, where the worker is

transferring generated inputs to the guest instance, Horus intercepts the vanilla transfer routines and directly

transfers the intercepted payload data to the location speciied by the agent during initialization. For the latter

scenario, when kAFL runs the Redqueen routines once for each new input before conducting traditional mutation

operations, the addresses of each comparison operation is recorded into a shared memory bufer through hooks

inserted into QEMU’s execution stream. When the agent inishes its execution, Horus on the worker side fetches

the operands using methods similar to that discussed in the previous section from each comparison operation

and returns the values for further use in Redqueen’s logic.

6 EVALUATION

We evaluate Horus’s efectiveness when adapted to kernel fuzzers Syzkaller , Moonshine and kAFL. To analyze

and understand Horus’s performance improvements over the original approaches, we propose and strive to

answer the following research questions:

• RQ1: Can Horus transfer fuzzing-relevant data faster than Syzkaller’s and Moonshine’s RPC mechanisms

and kAFL’s Nyx-based transfer mechanisms?

• RQ2: Can Horus achieve a empirically signiicant execution throughput improvement compared to using

RPC in Syzkaller and Moonshine and using Nyx in kAFL?

• RQ3: Does Horus assist kernel fuzzers achieve the same coverage as non-Horus versions faster?

• RQ4: How does Horus afect the kernel fuzzer’s abilities in inding kernel bugs?

To answer these research questions, we designed the following experiments.

For Syzkaller and Moonshine, we irst probe measure the round-trip-time (RTT) of sending a new input from

the fuzzer to the manager when using Horus’s mechanisms and Syzkaller’s original RPC systems; then, we

proile the processor execution time proportions for each component in both the fuzzer and manager instances

during fuzzing to acquire the reduction in data transfer overhead through using Horus and examine whether

Horus can improve the fuzzer’s execution throughput; next, we run Syzkaller ,Moonshine, Syzkaller+Horus and

Moonshine+Horus for 12 hours to compare their coverage statistics; inally, we examine the number of kernel

bugs found through using Horus.

For kAFL, we irst measure the average time for an input to be transferred to the agent under Horus and

kAFL’s Nyx backend as well as the average time for Horus and Nyx to recover Redqueen’s required operands;

we then collect the coverage statistics of kAFL with Horus and with Nyx over a period of 12 hours.

6.1 Experiment Setup

We conducted our experiments with Syzkaller and Moonshine on a server with an AMD EPYC 7742 64-Core

processor, 512 GiB of memory and running 64-bit Ubuntu 20.04.2 LTS. The tested kernels are the mainline, stable

ACM Trans. Softw. Eng. Methodol.

Horus • 15

and most-recent long-term versions, which, at the time of writing, are 5.16, 5.15 and 5.10, respectively. The

kernels are compiled with Kernel Address SANitizer (KASAN) enabled to detect any kernel crashes. The fuzzers

obtain kernel coverage using KCOV. We augment Syzkaller and Moonshine with Horus, which we refer them as

Syzkaller+Horus and Moonshine+Horus, or Syz+Hor and Ms+Hor for short. For the comparison experiments,

we conigure the virtual machine instances for the four fuzzers with identical parameters. Speciically, each fuzzer

instance has two virtual machine instances with 4 GiB of memory and two processor cores each. Each set of

experiments is repeated 5 times where each individual experiment is executed for 12 hours on a dedicated core.

Our experiments on kAFL are conducted on a server with an Intel Xeon Silver 4210R 20-core processor with

32GiB of memory and running 64-bit Ubuntu 20.04.2 LTS. The host system’s kernel is replaced with Kernel

5.10.73-kal+, the patched version provided by kAFL, which integrates Intel PT support for KVM. The kernel

under test is Linux 5.15-4 with the kAFL agent installed as /arch/x86/kernel/kafl-agent.c. The kernel is

compiled with KASAN support to detect any address violations triggered by kAFL. Each experiment is run with

identical parameters and allocated the same amount of resources. Speciically, each kAFL instance is alloted with

1GiB of memory and 1 dedicated CPU thread. Each set of experiments is run for 12 hours. A total of 5 experiments

were executed.

All statistics are then veriied through the Mann-Whitney U test, as per fuzzing guidelines laid down by Klees

et al [Klees et al. 2018], to determine whether there exists statistical diferences between the sets of data. The

relevant statistics are shown in Table 4, where we analyze the values for each entry in their respective sections.

6.2 Data Transfer Speed

To answer RQ1, we measure the time it takes for kernel fuzzers to complete a data transfer operation.

6.2.1 Syzkaller and Moonshine. Wemeasure the round trip time statistics for data transfers between the manager

and fuzzer instances in order to understand the data transfer speed speedups of Horus. The data transferred can

be of diferent sizes, since system call sequences can have a varying number of system calls and length of the

arguments, therefore, we also need to take into account the size of the transferred data in relation to its round

trip time.

We measure these statistics by inserting timer probes before initiating and after the conclusion of the relevant

RPC calls, including the relevant calls to Horus’s stubs. Since RPC calls itself have a considerable overhead, we

also implemented an empty RPC call in the manager’s RPC server and measured its round trip time when called

from the fuzzer instances.

The relevant results are shown in Figure 6. As we see in the graph, the regression lines have signiicantly

diferent slopes, indicating that Horus allows both Syzkaller and Moonshine to achieve a signiicant speedup in

round trip time statistics. On average, Syzkaller and Moonshine achieve a 34.0% and 33.5% speedup in round trip

time statistics when using Horus. However, these numbers include the time for an RPC call itself, thus, when

the amount of data transferred is relatively small, the beneits of using Horus are overshadowed by the RPC

call’s overhead itself. To obtain a clear picture of the actual speedup of Horus, we take the base time for a RPC

call into consideration. Considering that Horus’s round trip time statistics for data transfers under 15KiB have

negligible diference to the RPC call itself, we ilter out data with a length of less than 15KiB to assess the actual

speed of data transfers. In this case, Horus achieves a speedup of 84.5% and 85.8%.

As shown in Table 4, we have tested these statistics using the Mann Whitney U test and found that the � values

for Syzkaller and Moonshine are approximately 0.007 and 0.006, both less than 0.05, thus indicating that Horus’s

performance is statistically signiicant than that of vanilla Syzkaller and Moonshine. Thus, we can conclude

that, for Syzkaller and Moonshine, Horus is able to transfer data signiicantly faster than the RPC mechanisms

provided by traditional fuzzers.

ACM Trans. Softw. Eng. Methodol.

16 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

0 10 20 30 40 50 60 70

Data Size (KiB)

0

5

10

15

20

25

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Horus
Syzkaller
RPC overhead

(a) Syzkaller vs. Syzkaller+Horus.

0 10 20 30 40 50 60 70

Data Size (KiB)

0

5

10

15

20

25

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Horus
Moonshine
RPC overhead

(b) Moonshine vs. Moonshine+Horus.

Fig. 6. Round trip time statistics of sending diferent sized data structures between the fuzzer and manager instances. We
plot the regression lines for each dataset and shaded its 99% confidence intervals. The average overhead of the RPC call itself
is shown as a yellow area near the �-axis.

Table 1. Latency statistics of kAFL with Horus vs. vanilla kAFL. The transfer latency during execution does not exhibit a
significant diference, while Horus is capable of accelerating Redqueen’s retrieval eficiency.

Fuzzer Coniguration kAFL/Horus kAFL/Nyx

Payload Transfer Latency (ms) 4.62 4.58

Redqueen Retrieval Latency (ms) 138.6 172.1

6.2.2 kAFL. We measure the average delay of using Horus and Nyx for performing data transfers both during

executing a new input and when fetching comparison operands for Redqueen. The results are shown in Table 1.

As is evident in the chart, Horus unfortunately does not exhibit a signiicant diference when transferring

input data to the agent during fuzzing. We believe that this is due to kAFL’s input being linear in nature, unlike

the structured inputs in Syzkaller, therefore Horus’s designs that facilitate eicient structured data transfer does

not ofer any observable advantage. Our statistical tests tell the same story, with the p value in the Mann Whitney

U Test being signiicantly greater than 0.05.

However, for the Redqueen scenario,Horus exhibits an average latency of 138.6 while kAFL/Nyx has 172.1, thus

reducing latencies compared to vanilla kAFL by 19.4%. We believe that this demonstrates Horus’s efectiveness

when encountering structured data between the host and guest instances, as multiple ofsets in a memory image

is similar to that of a simple structure. The statistical tests show a � value of around 0.042, which indicates

statistically signiicant diferences between the data.

6.3 Execution Throughput

To answer RQ2, we measure the overall execution throughputs of each fuzzer coniguration and determine

whether Horus delivers an uplift to their fuzzing performances.

ACM Trans. Softw. Eng. Methodol.

Horus • 17

6.3.1 Syzkaller and Moonshine. We irst evaluate and compare the execution throughput of Syzkaller and

Moonshine when using Horus or RPC to perform data transfers. To this end, we gathered the number of

executions of each kernel fuzzing trial over a period of 12 hours. For each fuzzer, we averaged over the total

number of executions. The relevant results are shown in Table 2. As listed in the table,Horus assists Syzkaller and

Moonshine to achieve an execution throughput speedup of 31.07% and 30.62%, respectively. Statistical signiicance

is established, as shown in Table 4, where the p-values of both Syzkaller and Moonshine’s evaluations are below

0.05.

Table 2. Execution count and throughput statistics over 12 hours of Syzkaller , Syzkaller+Horus, Moonshine and
Moonshine+Horus for the respective Linux kernel versions.

Fuzzer 5.16 5.15 5.10 Average

Syzkaller 1.62E+06 1.73E+06 1.96E+06 1.77E+06

Syz+Horus 2.50E+06 2.47E+06 2.73E+06 2.56E+06

Syz, exec/m 2252.7 2397.9 2715.4 2455.3

Syz+Hor, exec/m 3469.1 3429.0 3788.7 3562.3

Improvement +54.00% +43.00% +39.53% +45.08%

Moonshine 1.56E+06 1.62E+06 1.89E+06 1.69E+06

Ms+Horus 2.12E+06 2.03E+06 2.45E+06 2.43E+06

Ms, exec/m 2171.9 2246.3 2620.3 2346.2

Ms+Hor, exec/m 2949.3 2820.2 3403.8 3381.9

Improvement +35.79% +25.55% +29.90% +44.14%

To verify that Horus is the root cause for the respective performance improvements, we then proile the

runtime compositions of various functional components during Syzkaller and Moonshine’s fuzzing campaign.

Similar to the preliminary analysis in Section 3, we use pprof to break down each fuzzer instance’s runtime

performance. In particular, we focus our attention on the execution time for the RPC systems and data transfer

mechanisms. A signiicant decrease in their execution time proportions will indicate that Horus can efectively

increase kernel fuzzer’s execution throughput by lowering the overhead of data transfer mechanisms.

The relevant results are shown in Figure 7a for the manager instance and Figure 7b for the fuzzer instance.

Since Moonshine’s runtime composition is very similar to that of Syzkaller’s, we omitted the information from

the plots for greater clarity. In this graph, RPC represents the execution time proportions of the RPC systems

itself, such as encoding call arguments, sending and receiving on network sockets, etc.; Data represents the

execution time proportions for Syzkaller to perform data transfers, using either Horus or the RPC systems for

the Horus-improved and original versions, respectively. The statistics obtained during the preliminary analysis

are also included for comparison. Obviously, the execution time proportions of the RPC systems and data transfer

mechanisms both decreased signiicantly with the use of Horus, demonstrating that it is Horus that lowered

Syzkaller and Moonshine’s overhead, thus increasing their overall execution throughput statistics.

We further conducted an experiment to evaluate the individual efectiveness of each component in Horus, i.e.

exposing the guest’s memory space into the host and conducting transfers usingHorus’s transfer techniques. The

results are shown in Figure 8. As is evident in the graph, using VMI to transfer the data blobs directly results in a

signiicant reduction in overhead compared to using RPC calls to transfer the data blobs. However the overhead

still grows signiicantly as the size of the blob grows. In comparison, using full Horus with Syzkaller/Moonshine

is signiicantly faster than transferring data blobs, either through RPC or VMI. The luctuation in Horus’s transfer

latency is due to the variable time it takes for the empty RPC call to reach its receiver. The actual time used

ACM Trans. Softw. Eng. Methodol.

18 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

(a) Performance profiling of Syzkaller’s manager in-
stances with and without Horus implemented.

(b) Performance profiling of Syzkaller’s fuzzer instances
with and without Horus implemented.

Fig. 7. Performance profiling of Syzkaller’s manager and fuzzer instances. The�-axis represents the execution time proportions
of the individual components. RPC represents the execution time proportions used for sending data through TCP/IP-backed
RPC systems. Data represents the execution time proportions used to encode and decode the data for Syzkaller and to
transfer the data to and from the stub structures for Horus.

during transferring data is negligible in comparison. Thus we demonstrate that Horus’s transfer mechanisms

deliver signiicant improvements in comparison to either using RPC or VMI to directly transfer the serialized or

deserialized blobs.

20 40 60 80 100
Data size (kB)

100

101

La
te

nc
y

(m
s)

Comparison between different components in Syzkaller
Syz+Hor
Syz+Direct
Syzkaller

(a) Syzkaller’s component-wise contributions.

20 40 60 80 100
Data size (kB)

100

101

La
te

nc
y

(m
s)
Comparison between different components in Moonshine

Moo+Hor
Moo+Direct
Moonshine

(b) Moonshine’s component-wise contributions

Fig. 8. Breakdown of the individual components inHorus for both Syzkaller andMoonshine. łSyz+Horž/łMoo+Horž indicates
Syzkaller/Moonshine using Horus, while łSyz+Directž/łMoo+Directž indicates Syzkaller/Moonshine transferring the RPC
data blobs directly through VMI, and łSyzkallerž/łMoonshinež indicates using vanilla Syzkaller/Moonshine.

Thus, for Syzkaller and Moonshine, we can answer RQ2 by demonstrating that Horus, through reducing the

overhead for data transfers, helps state-of-the-art kernel fuzzers achieve better execution throughput.

6.3.2 kAFL. We also measured the execution throughput statistics of kAFL with Horus compared with vanilla

kAFL. The statistics are given as follows: the average execution throughput of kAFL with Horus are on average

ACM Trans. Softw. Eng. Methodol.

Horus • 19

102.3 executions per second, while that of vanilla kAFL is 100.2 executions per second. The statistical testing,

as shown in Table 4, presents a value greater than 0.05, therefore their performance are within error margins

of each other. Unfortunately, Horus does not exhibit an impressive improvement over kAFL with Nyx. We

believe that the reason still lies within the results in the previous evaluation, where kAFL’s inputs transferred to

the guest instance are mainly linear bufers, therefore does not fully demonstrate Horus’s transfer techniques’

capabilities. In addition, while Redqueen’s transfer speed are increased, it is only used during processing new

seeds, which is sparsely scattered within the 12-hour fuzzing period, whereas for the most commonly used data

transfer scenario, which is transferring the input bufer, Horus does not show signiicant improvement. This

result is within expectations, as Horus mainly targets the transfer of structured data, while kAFL’s data transfer

is, as aforementioned, linear data bufers, thus not demonstrating Horus’s full potential, as relected in Syzkaller

and Moonshine’s statistics.

0 2 4 6 8 10 12

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
u
m
b
er

o
f
B
ra
n
ch
es

C
o
v
er
ed

Syz compared with Syz+Hor on Linux 5.10

Syzkaller

Syz+Horus

0 2 4 6 8 10 12

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
u
m
b
er

o
f
B
ra
n
ch
es

C
o
v
er
ed

Ms compared with Ms+Hor on Linux 5.10

Moonshine

Ms+Horus

0 2 4 6 8 10 12

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
u
m
b
er

o
f
B
ra
n
ch
es

C
o
v
er
ed

Syz compared with Syz+Hor on Linux 5.15

Syzkaller

Syz+Horus

0 2 4 6 8 10 12

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
u
m
b
er

o
f
B
ra
n
ch
es

C
o
v
er
ed

Ms compared with Ms+Hor on Linux 5.15

Moonshine

Ms+Horus

0 2 4 6 8 10 12

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
u
m
b
er

o
f
B
ra
n
ch
es

C
o
v
er
ed

Syz compared with Syz+Hor on Linux 5.16

Syzkaller

Syz+Horus

0 2 4 6 8 10 12

0.3

0.6

0.9

1.2

1.5
·105

Time [h]

N
u
m
b
er

o
f
B
ra
n
ch
es

C
o
v
er
ed

Ms compared with Ms+Hor on Linux 5.16

Moonshine

Ms+Horus

Fig. 9. Branch coverage statistics of Syzkaller , Syzkaller+Horus, Moonshine, Moonshine+Syzkaller for the respective kernel
versions over a duration of 12 hours.

6.4 Coverage Statistics

We address RQ3 through examining their respective coverage growths and determining whether using Horus

allows fuzzers to achieve the same coverage in a shorter amount of time.

6.4.1 Syzkaller and Moonshine. We wish to evaluate whether the execution throughput speedup delivered

through Horus can assist Syzkaller andMoonshine in achieving better code coverage. Hence, we conduct fuzzing

campaigns for Syzkaller , Moonshine, Syzkaller+Horus and Moonshine+Horus over a period of 12 hours on the

three kernel versions. Each fuzzer’s campaign is repeated 5 times. We sample their coverage statistics every

10 seconds during their respective campaigns and take the average values. The overall results are presented in

Table 3, and we show the plots of coverage over the duration of their respective fuzzing campaigns in Figure 9.

As listed in Table 4, we performed statistical testing on the results, and found that the kernels 5.10 on Syzkaller ,

5.10 on Moonshine and 5.16 on Moonshine have a � value of over 0.05, while the other three do not. Upon further

ACM Trans. Softw. Eng. Methodol.

20 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

Table 3. Coverage statistics of Syzkaller , Syzkaller+Horus,Moonshine andMoonshine+Horus on the respective Linux kernel
versions over a duration of 12 hours.

Fuzzer 5.10 5.15 5.16 Average

Syzkaller 1.14E+05 1.13E+05 1.17E+05 1.15E+05

Syz+Horus 1.20E+05 1.26E+05 1.22E+05 1.23E+05

Improvement +5.3% +11.5% +4.3% +6.9%

Speedup +1.3× +1.9× +1.6× +1.6×

Moonshine 1.13E+05 1.16E+05 1.14E+05 1.14E+05

Ms+Horus 1.22E+05 1.26E+05 1.22E+05 1.23E+05

Improvement +8.0% +8.6% +7.0% +8.2%

Speedup +1.5× +1.7× +1.5× +1.6×

examination, we ind that the p-values are borderline. As the acceleration efects tends to lean towards fuzzing

segments that contain frequent data transfers, we deduce that the efects can be more observable at the beginning

half of the fuzzing run. Therefore for these entries, we calculated their respective p-values when considering

their coverage statistics for the irst 6-hours of the entire run. Thus, all six data sets yield � values of less than

0.05, demonstrating a statistically signiicant improvement over vanilla Syzkaller and Moonshine.

The statistics show that: for Syzkaller , Horus assists the fuzzer in increasing coverage statistics for the Linux

kernel versions 5.16, 5.15 and 5.10 by 7.22%, 11.71% and 8.39%, respectively, with an average of 9.09%, at the

end of 12 hours; for Moonshine, Horus increases the fuzzer’s coverage statistics by 7.72%, 8.93% and 7.24%, with

an average of 7.97%, respectively. However, comparing coverage statistics at the end of the campaign does not

reveal the entire picture. As shown in the plot, Horus accelerates Syzkaller and Moonshine’s coverage statistics

signiicantly before the 4-hour-mark. Furthermore, Syzkaller+Horus andMoonshine+Horuswere able to achieve

the same coverage as Syzkaller andMoonshine did over 12 hours signiicantly faster, leading to a speedup of 1.6×

and 1.6× for Syzkaller and Moonshine, respectively. Intuitively, kernel fuzzers beneit from Horus’s design more

when they frequently ind test cases that trigger new kernel behavior, thus transferring newly found inputs more

often to the manager. When new interesting test cases become rare, the coverage statistics of kernel fuzzers will

converge to similar points with and without Horus. We believe that Horus’s mechanisms will beneit fuzzers

more when they are capable of generating increasingly high quality inputs, thus being capable of exploring the

kernel’s state space faster and reaping the beneits of using Horus even greater.

Therefore, for Syzkaller andMoonshine, we can answer RQ3 that Horus is able to increase the speed at which

kernel fuzzers explore kernel state, allowing those fuzzers to cover kernel code more eiciently.

6.4.2 kAFL. We also examined the coverage statistics of using Horus on kAFL when compared to vanilla kAFL.

The results are shown in Figure 10. As expected, due to no signiicant execution throughput increases observable

when adapting Horus to kAFL, we do not see a signiicant improvement of the coverage statistics over a duration

of 12 hours, which is evidenced through our statistical testing, as shown in Table 4, where the datasets yielded a

� value of greater than 0.05. This is indeed as expected, as the previous two evaluations shows that Horus does

not deliver a statistically signiicant speedup when compared to vanilla kAFL. We will delve into the relevant

details in Section 7.

6.5 Bug Detection

Though Horus does not aim to improve kernel fuzzer’s bug detection capabilites, we are interested in evaluating

the efects of increasing execution throughput on the number of bugs found under a given time constraint. Thus,

ACM Trans. Softw. Eng. Methodol.

Horus • 21

0 2 4 6 8 10 12
Time (h)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Co
ve

ra
ge

 (k
)

Coverage of kAFL with Horus

(a) Coverage growth of kAFL with Horus.

0 2 4 6 8 10 12
Time (h)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Co
ve

ra
ge

 (k
)

Coverage of Vanilla kAFL

(b) Coverage growth of kAFL with Nyx.

Fig. 10. Coverage statistics of kAFL with Horus and with Nyx on Linux kernel 5.15-4 over a duration of 12 hours. The blue
shaded areas represent the range of the values at each sample point. The blue solid line is the average coverage statistics.

Table 4. Mann-Whitney U-Test p-values for each statistical comparison.

Evaluation Target Fuzzer Coniguration p-value Signiicance Comment

Data transfer speeds

Syzkaller - 0.007 ✓ -

Moonshine - 0.006 ✓ -

kAFL
Bufer Transfer > 0.05 × Apparent from results

Redqueen 0.042 ✓ -

Syzkaller - 0.009 ✓ -

Execution throughput Moonshine - 0.011 ✓ -

kAFL - > 0.05 × Apparent from results

Coverage

Syzkaller

Kernel 5.10 0.052 × Borderline, see below

Kernel 5.15 0.023 ✓ -

Kernel 5.16 0.046 ✓ -

Kernel 5.10 0.061 × Borderline, see below

Moonshine Kernel 5.15 0.042 ✓ -

Kernel 5.16 0.057 × Borderline, see below

kAFL Kernel 5.15-4 > 0.05 × Apparent from results

Syzkaller-6h Kernel 5.10 0.036 ✓ -

Moonshine-6h
Kernel 5.10 0.047 ✓ -

Kernel 5.16 0.021 ✓ -

we collected the bug report data generated by Syzkaller , Moonshine, Syzkaller+Horus, and Moonshine+Horus

over their respective fuzzing campaigns. We manually analyzed the bug reports to remove false-positives and

ACM Trans. Softw. Eng. Methodol.

22 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

duplicates. The results are as follows. Syzkaller and Syzkaller+Horus found 8 unique bugs in total, of which

Syzkaller found 5 and Syzkaller+Horus found all 8. Moonshine and Moonshine+Horus found 11 unique bugs in

total, of which Moonshine found 7 and Moonshine+Horus found 10.

Thus, we conclude that Horus can help Syzkaller and Moonshine ind more kernel bugs under a given time

constraint, which adequately answers RQ4. We also performed kernel fuzzing using Horus for an extended

period of time. Of the bugs found, we submitted reports and received conirmation for 5 previously unknown

bugs, as listed in Table 5.

Table 5. Previously unknown unique bugs found by the fuzzers used during evaluation.

Operation Bug Type Status

svm_vm_copy_asid_from deadlock Conirmed

devkmsg_read deadlock Conirmed

add_transaction_credits assert error Conirmed

kvm_mmu_uninit_tdp_mmu assert error Fixed

usbdev_release assert error Conirmed

7 DISCUSSION

7.1 Performance on kAFL

Horus is less efective when adapted to kAFL, compared to that of Syzkaller and Moonshine. Our analysis

and reasoning points us to the following reasons. First, in comparison to fuzzers that perform non-trivial,

highly-structure data transfers between their respective host and guest instances, such as Moonshine, HEALER,

TARDIS [Shen et al. 2022], etc., the data that is transferred between the host and guest instances in kAFL are

linear data bufers that are illed into speciic kernel bufers, which does not fully match Horus’s design goal to

facilitate eicient data transfers of highly-structured data between host and guest instances in kernel fuzzing

scenarios. Second, unlike Syzkaller and Moonshine, kAFL utilizes a host-guest shared memory bufer to transmit

relevant data, which is a functionality provided by its Nyx backend, while Syzkaller andMoonshine rely on slower

RPC calls. Nevertheless, Horus still provides a performance uplift in the Redqueen component, where it transfers

structural data, thus demonstrating Horus’s efectiveness. Furthermore, many kernel fuzzers are also designed

with data transfer requirements similar to that of Syzkaller , and thus can utilize Horus’s data transfer methods

to improve overall fuzzing eiciencies.

7.2 Applicability to Other Kernel Fuzzers

Our design, as shown in Section 4, is based on Syzkaller due to the requirement of tight integration imposed

by the speciic ixed stub structures required, as well as the interception of the original data transfer procedures.

However, this method is widely applicable to kernel fuzzers that use the manager-fuzzer model, which requires

constant data transfers between the two components to synchronize test cases and kernel coverage while having

high transfer overheads. To adopt to another kernel fuzzer, one should irst identify the structures to pass through

direct memory accesses and the relevant transfer procedures to intercept. Then they can implement ixed stub

structures and the relevant memory layout descriptions. Finally, the they can reuse the QEMU patch and facilitate

transfer operations to that of Horus.

ACM Trans. Softw. Eng. Methodol.

Horus • 23

7.3 Guest Physical Memory Consistency

Currently, our design does not support page swapping in the guest VM. Swapping occurs when the kernel has

insuicient physical memory pages to map newly requested memory and must swap some infrequently used

pages to disk. This results in invalidating the ixed stub structures’ physical memory descriptions, leading to

incorrect data transfers by using Horus. Currently, we have disabled page swapping in our VMs to avoid this

scenario.

Furthermore, the ixed stub structures are allocated with constant capacities. However, as the fuzzing campaign

progresses, the system call sequences generated may become more complex, thus there may be a point after

which the data that needs to be transferred using Horus can no longer it within the stub structures’ bufers.

To mitigate this, we can reallocate the stub structures when their capacities are too small and re-register the

memory layout on demand to the manager process.

7.4 Implications on Kernel Fuzzer Design

There are further design implications for kernel fuzzers when utilizing direct memory access to the memory

space of guest virtual machine instances. In order for kernel fuzzers to eicient, they need to 1) retain as little

code in the emulated guest machines as possible, 2) reduce inter-process communications as much as possible,

and 3) leverage eicient IPC primitives when such communication is inevitable. Using Syzkaller as an example, it

places the fuzzer in the guest virtual machine, as it frequently passes to-be-executed programs to the executor

for system call sequence invocation, while sending new inputs to the manager instance occurs relatively sparse,

thus allowing the fuzzer and executor to pass information through a shared memory region while leveraging

RPC for communication between the fuzzer and manager instances. However, there is the possibility of moving

the fuzzer’s functionality into the host machine, thus allowing the fuzzer instances to run at native speed rather

than the reduced emulated speed due to the emulation overhead. Utilizing the insights of Horus, the fuzzer can

communicate directly with the executor via shared memory, while removing RPC entirely with other eicient

IPC primitives such as pipes. By making such adjustments, kernel fuzzers such as Syzkaller can conform to the

aforementioned three principles and yield more performance during fuzzing. As this is a research problem on

its own, i.e. distributing the workload to maximize fuzzing eiciency, we believe that this is another topic that

should be conducted as future work.

8 CONCLUSION

In this paper, we identify that data transfer overheads in kernel fuzzers afect their efectiveness in covering

kernel code and detecting potential vulnerabilities. We propose Horus, a kernel fuzzing data transfer mechanism

that mitigates the synchronization overheads present in kernel fuzzers such as Syzkaller and Moonshine by

circumventing their original data transfer mechanisms over remote procedure calls. In doing so, our approach

provides a more eicient solution towards eiciently transferring highly-structured data between host to the

guest instances. Speciically, Horus exposes the guest fuzzer’s memory space to host manager and sets up

ixed stub structures in the fuzzer instances during their initialization processes. Horus then registers the stub

structures with the manager to allow for eicient transfers. When conducting transfers,Horus’s stubs in both the

manager and fuzzer instances use the stub structures to pass highly-structured and non-trivial data consistently

and eiciently. Our evaluation shows that Horus improves data transfer speeds by 84.5% and 85.8% , as well

as execution throughput by 31.07% and 30.62% for Syzkaller and Moonshine, respectively. In addition, Horus

allows Syzkaller and Moonshine to achieve a speedup of 1.6× and 1.6× and increases their coverage statistics

by 6.9% and 8.2% over a period of 12 hours, respectively. On kAFL, Horus decreases the data transfer latency

of its Redqueen component by 19.4%. To facilitate open research, we have open-sourced Horus on Github

(https://github.com/Wingtecher-OSLab/Horus).

ACM Trans. Softw. Eng. Methodol.

https://github.com/Wingtecher-OSLab/Horus

24 • Jianzhong Liu, Yuheng Shen, Yiru Xu, Hao Sun, and Yu Jiang

ACKNOWLEDGMENTS

This research is sponsored in part by the National Key Research and Development Project (No. 2022YFB3104000,

No2021QY0604) and NSFC Program (No. 62022046, 92167101, U1911401, 62021002, U20A6003).

REFERENCES
Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State

Correspondence.. In NDSS, Vol. 19. 1ś15.

Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In 2005 USENIX Annual Technical Conference (USENIX ATC 05). USENIX

Association, Anaheim, CA. https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-

dynamic-translator

Andrew D. Birrell and Bruce Jay Nelson. 1984. Implementing Remote Procedure Calls. ACM Trans. Comput. Syst. 2, 1 (feb 1984), 39ś59.

https://doi.org/10.1145/2080.357392

Tim Blazytko, Matt Bishop, Cornelius Aschermann, Justin Cappos, Moritz Schlögel, Nadia Korshun, Ali Abbasi, Marco Schweighauser,

Sebastian Schinzel, Sergej Schumilo, et al. 2019. {GRIMOIRE}: Synthesizing structure while fuzzing. In 28th USENIX Security Symposium

(USENIX Security 19). 1985ś2002.

Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou, Xun Jiao, and Zhuo Su. 2019. Enfuzz: Ensemble fuzzing with

seed synchronization among diverse fuzzers. In 28th USENIX Security Symposium (USENIX Security 19). 1967ś1983.

Pradyumna Dash. 2013. Getting Started with Oracle VM VirtualBox. Packt Publishing.

Alex Deucher. 2021. CVE-2021-42327. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42327.

Marco Elver. 2019. The Kernel Concurrency Sanitizer. https://patchwork.kernel.org/project/linux-kbuild/patch/20191017141305.146193-2-

elver@google.com/.

S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. 2018. CollAFL: Path Sensitive Fuzzing. In 2018 IEEE Symposium on Security and

Privacy (SP). 679ś696.

Stefano Garzarella. 2020. vsock. https://devconfcz2020a.sched.com/event/YOwb/vsock-vm-host-socket-with-minimal-coniguration.

Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-Based Whitebox Fuzzing. SIGPLAN Not. 43, 6 (June 2008), 206ś215.

https://doi.org/10.1145/1379022.1375607

Google. 2021a. CVE-2021-1048. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1048.

Google. 2021b. pprof. https://github.com/google/pprof.

Ben Hutchings. 2021. CVE-2021-42008. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42008.

Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik Shin. 2019. Razzer: Finding Kernel Race Bugs through

Fuzzing. In 2019 IEEE Symposium on Security and Privacy (SP). 754ś768. https://doi.org/10.1109/SP.2019.00017

Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux

Kernel. In NDSS.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo Kim. 2019. Finding Semantic Bugs in File Systems with an

Extensible Fuzzing Framework. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)

(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 147ś161. https://doi.org/10.1145/3341301.3359662

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating fuzz testing. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. 2123ś2138.

Patrik Lantz. 2021. CVE-2021-44733. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44733.

lcamtuf. 2013. American Fuzzy Lop. https://lcamtuf.coredump.cx/al/.

Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou, and Jiaguang Sun. 2018. Pal: extend fuzzing optimizations of single mode

to industrial parallel mode. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering. ACM, 809ś814.

Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu, Zhe Liu, and Jiaguang Sun. 2022. Pata: Fuzzing with path aware

taint analysis. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1ś17.

Darek Mihoka, Stanislav Shwartsman, and Intel Corp. 2008. Virtualization Without Direct Execution or Jitting: Designing a Portable Virtual

Machine Infrastructure. In Emerging Technologies for Information Systems, Computing, and Management.

Bart Miller. 1988. CS 736: Project Assignment Lists. http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf.

Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. Moonshine: Optimizing OS Fuzzer Seed Selection with Trace Distillation. In

Proceedings of the 27th USENIX Conference on Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 729ś743.

Sagar Patni, Jobin George, Pratik Lahoti, and Jibi Abraham. 2015. A zero-copy fast channel for inter-guest and guest-host communication

using VirtIO-serial. In 2015 1st International Conference on Next Generation Computing Technologies (NGCT). 6ś9. https://doi.org/10.1109/

NGCT.2015.7375072

ACM Trans. Softw. Eng. Methodol.

https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://doi.org/10.1145/2080.357392
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42327
https://patchwork.kernel.org/project/linux-kbuild/patch/20191017141305.146193-2-elver@google.com/
https://patchwork.kernel.org/project/linux-kbuild/patch/20191017141305.146193-2-elver@google.com/
https://devconfcz2020a.sched.com/event/YOwb/vsock-vm-host-socket-with-minimal-configuration
https://doi.org/10.1145/1379022.1375607
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1048
https://github.com/google/pprof
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42008
https://doi.org/10.1109/SP.2019.00017
https://doi.org/10.1145/3341301.3359662
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44733
https://lcamtuf.coredump.cx/afl/
http://pages.cs.wisc.edu/~bart/fuzz/CS736-Projects-f1988.pdf
https://doi.org/10.1109/NGCT.2015.7375072
https://doi.org/10.1109/NGCT.2015.7375072

Horus • 25

Andrey Ryabinin. 2014. The Kernel Address Sanitizer. https://lwn.net/Articles/611410/.

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner, and Thorsten Holz. 2021. Nyx: Greybox hypervisor fuzzing using fast

snapshots and aine types. In 30th USENIX Security Symposium (USENIX Security 21). 2597ś2614.

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback

Fuzzing for OS Kernels. In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 167ś182. https:

//www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo

Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and Thorsten Holz. 2022. Nyx-Net: Network Fuzzing with Incremental

Snapshots. In Proceedings of the Seventeenth European Conference on Computer Systems (Rennes, France) (EuroSys ’22). Association for

Computing Machinery, New York, NY, USA, 166ś180. https://doi.org/10.1145/3492321.3519591

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.

In Proceedings of the 2012 USENIX Conference on Annual Technical Conference (Boston, MA) (USENIX ATC’12). USENIX Association, USA,

28.

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data Race Detection in Practice. In Proceedings of the Workshop on

Binary Instrumentation and Applications (New York, New York, USA) (WBIA ’09). Association for Computing Machinery, New York, NY,

USA, 62ś71. https://doi.org/10.1145/1791194.1791203

Yuheng Shen, Hao Sun, Yu Jiang, Heyuan Shi, Yixiao Yang, and Wanli Chang. 2021. Rtkaller: State-Aware Task Generation for RTOS Fuzzing.

ACM Trans. Embed. Comput. Syst. 20, 5s, Article 83 (sep 2021), 22 pages. https://doi.org/10.1145/3477014

Yuheng Shen, Yiru Xu, Hao Sun, Jianzhong Liu, Zichen Xu, Aiguo Cui, Heyuan Shi, and Yu Jiang. 2022. Tardis: Coverage-Guided Embedded

Operating System Fuzzing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022), 1ś1. https://doi.org/10.

1109/TCAD.2022.3198910

Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi, Xun Jiao, Houbing Song, Yu Jiang, and Jiaguang Sun. 2019. Industry practice

of coverage-guided enterprise linux kernel fuzzing. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 986ś995.

Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang. 2022. {KSG}: Augmenting Kernel Fuzzing with System Call Speciication

Generation. In 2022 USENIX Annual Technical Conference (USENIX ATC 22). 351ś366.

Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen, and Aiguo Cui. 2021. HEALER: Relation Learning Guided Kernel

Fuzzing. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21). Association

for Computing Machinery, New York, NY, USA, 344ś358. https://doi.org/10.1145/3477132.3483547

Dmitry Vyukov. 2016. syzkaller. https://github.com/google/syzkaller.

Dmitry Vyukov and Andrey Konovalov. 2020. Syzbot. https://syzkaller.appspot.com/upstream/ixed.

Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Chengnian Sun, and Jiaguang Sun. 2021. {RIFF}: Reduced Instruction Footprint

for {Coverage-Guided} Fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21). 147ś159.

Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020. Krace: Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium

on Security and Privacy (SP). 1643ś1660. https://doi.org/10.1109/SP40000.2020.00078

Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and Limin Sun. 2019. FIRM-AFL: high-throughput greybox fuzzing

of iot irmware via augmented process emulation. In 28th USENIX Security Symposium (USENIX Security 19). 1099ś1114.

ACM Trans. Softw. Eng. Methodol.

https://lwn.net/Articles/611410/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/3477014
https://doi.org/10.1109/TCAD.2022.3198910
https://doi.org/10.1109/TCAD.2022.3198910
https://doi.org/10.1145/3477132.3483547
https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream/fixed
https://doi.org/10.1109/SP40000.2020.00078

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Kernel Fuzzing
	2.2 System Emulation
	2.3 Host-VM Communication

	3 Motivation
	4 HORUS Design
	4.1 Correctly Finding Inter-Memory-Space Data Structures
	4.2 Efficiently and Consistently Transferring Data Structures

	5 Implementation
	5.1 Syzkaller and Moonshine
	5.2 kAFL

	6 Evaluation
	6.1 Experiment Setup
	6.2 Data Transfer Speed
	6.3 Execution Throughput
	6.4 Coverage Statistics
	6.5 Bug Detection

	7 Discussion
	7.1 Performance on kAFL
	7.2 Applicability to Other Kernel Fuzzers
	7.3 Guest Physical Memory Consistency
	7.4 Implications on Kernel Fuzzer Design

	8 Conclusion
	Acknowledgments
	References

